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Free polynomial maps

We consider free polynomial maps.

For example,

P(x1, x2) = (x1x2 + x2x1, x
4
1 + x22 ).

Note x1x2 6= x2x1. We want to establish conditions for such maps
to be injective when evaluated on tuples of matrices matrices. We
will use lower case letters for variables and upper case letters for
matrices.
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The matrix universe

Let Mn be the matrices of size n.
We define the matrix universe Md in d variables to be all d-tuples
of matrices with the same fixed size:

Md =
∞⋃
n=1

Md
n .



Domains

A domain D ⊂ Md is a subset of the matrix universe that is closed
under direct sums and similarity. That is,

I A ∈ D,B ∈ D ⇒
(
A 0
0 B

)
∈ D.

I A ∈ D ⇒ S−1AS ∈ D for every invertible matrix S .

(We take the convention that X = (Xi )
d
i=1 and

S−1XS = (SXiS)di=1)

Note the evaluation of a free polynomial P respects this structure:

I P

(
A 0
0 B

)
=

(
P(A) 0

0 p(B)

)
.

I S−1P(A)S = P(S−1AS) for every invertible matrix S .
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Derivatives of free polynomials

We fix the notation that DP(X )[H] is the Gateaux derivative of
the the polynomial P at X in the direction H. Thus, there is the
formula for X ,H ∈ Md

n

DP(X )[H] = lim
t→0

P(X + tH)− P(X )

t
.

This can be taken formally via the following identities

I Dxi (X )[H] = Hi ,

I D[PQ](X )[H] = (DP(X )[H])Q + P(DQ(X )[H]), and

I D[P + Q](X )[H] = D[P](X )[H] + D[Q](X )[H].

Thus, the derivative of f (x1, x2) = x1x2 is

Df (X )[H] = H1X2 + X1H2.
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The Inverse Function Theorem

Theorem
Let P : D → M d̃ be a free polynomial map. The following are
equivalent:

1. P is injective.

2. DP(X ) is nonsingular for every matrix tuple X . That is,

DP(X )[H] = 0 implies h = 0.

Thus, for free polynomials local injectivity implies global
injectivity.
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Example

Let
P(x) = x2

The derivative of P is given by the following formula.

DP(X )[H] = XH + HX .

If P is to be injective on some domain D, then DP(X )[H] = 0
must imply that H = 0 for every X ∈ D.
For a given X ∈ Mn the equation

XH + HX = 0

has solutions such that H 6= 0 only if X has eigenvalues in common
with −X . (This is a degenerate form of Sylvester’s equation.)
So, P is injective for matrices with spectrum in the right half
plane, since for each X with spectrum in the right half plane, the
equation XH + HX = 0 implies H = 0.
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The Jacobian conjecture

Classically, many have considered the following conjecture.

Conjecture (Ott-Heinrich Keller ’22)

Let P : Cn → Cn be a polynomial map. The following are
equivalent:

1. P is injective.

2. DP(x) is nonsingular for every tuple x ∈ Cn. That is,

DP(x)[h] = 0 implies h = 0.

Much is known about injective polynomial maps. For example,
Grothendieck (’66) showed they must be surjective and Rudin
(’95) showed such a function’s inverse is given by a polynomial. It
is also known that if this result is true for cubic maps, then it is
true in general due to Bass, Connell and Wright (’82).
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The Jacobian conjecture (Commuting matrix version)

Commutative matrix tuples are a domain. The following is a
corollary of our inverse function theorem.

Theorem
Let P be a polynomial map. The following are equivalent:

1. P is injective.

2. P is bijective.

3. DP(X ) is nonsingular for every commuting matrix tuple X .

4. P−1 exists and is given by a polynomial map.

Our result supplies the equivalence of injectivity with nonsingular
derivative, the rest are previously known to be equivalent due to
work on the classical Jacobian conjecture.
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Special identities for free polynomials

Fact
Let P be a free polynomial, X ,Y ∈ Md

n , t ∈ C then

P

(
X t(X − Y )
0 Y

)
=

(
P(X ) t(P(X )− P(Y ))

0 P(Y )

)

Fact
Let P be a free polynomial. Let X ,H ∈ Md

n .

P

(
X H
0 X

)
=

(
P(X ) DP(X )[H]

0 P(X )

)



Proof

We apply the following fact.

Theorem

f

(
X H
0 X

)
=

(
f (X ) Df (X )[H]

0 f (X )

)

Suppose f is injective.
If the derivative is singular at some matrix X in the direction H,
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Proof

For the converse we apply the following fact.
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For the other direction. Suppose f has nonsingular derivative
everywhere. Let f (X ) = f (Y ).
Differentiate the identity
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which implies X = Y .
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The inverse function theorem

So we have proven the theorem.

Theorem
Let P be a free polynomial map. The following are equivalent:

1. P is injective.

2. DP(X ) is nonsingular for every matrix tuple X .



General picture

In general, the inverse function theorem holds for functions defined
on subsets matrices that respect direct sum and conjugation.

That is,
f (S−1XS) = S−1f (X )S ,

and
f (X ⊕ Y ) = f (X )⊕ f (Y ).

Also, this is an algebraic theorem. It works over any field if we
define

D(Xi ) = Hi ,D(fg) = D(f )g + fD(g).
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