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The reflection principle

Let Π denote the upper half plane in C. A function f : Π ∪ (−1, 1)→ C
which is

I continuous on Π ∪ (−1, 1),

I analytic on Π,

I and real-valued on (−1, 1),

analytically continues to Π ∪ (−1, 1) ∪ −Π.
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What is the reflection principle in several variables?

We will restrict our attention to the case of two variables.

Consider a function f : Π2 ∪ (−1, 1)2 → C which is

I continuous on Π2 ∪ (−1, 1)2,

I analytic on Π2,

I and real-valued on (−1, 1)2.

We would like to say that ”f analytically continues to
Π2 ∪ (−1, 1)2 ∪ −Π2”by analogy with the reflection principle. However,
Π2 ∪ (−1, 1)2 ∪ −Π2 is not an open set; so it is unclear what saying
”analytically continues” would mean.
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What is the reflection principle in several variables?

(−1, 1)2 ⊆ R2
Im z

Im w

Π2

−Π2 Π×−Π

−Π× Π

Figure : A diagram of Π2 ∪ (−1, 1)2 ∪ −Π2 projected onto the imaginary axes.
Note that this set is not open.

4 / 82



What is the reflection principle in several variables?

Some history:

I The reflection principle in several variables we will discuss is called
the edge-of-the-wedge theorem.

I The edge-of-the-wedge theorem was discovered by physicist Nikolay
Bogoliubov.

I He proved the theorem to show that ”Wightman functions” which
arise in some formulation of quantum field theory have nice analytic
continuation properties.

I The theorem’s importance as a stem theorem in several complex
variables was realized over time. Rudin wrote an excellent text on
the subject, called Lectures on the edge-of-the-wedge theorem.
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The edge-of-the-wedge theorem

The is an open set D containing Π2 ∪ (−1, 1)2 ∪ −Π2 so that every
function f : Π2 ∪ (−1, 1)2 → C which is

I continuous on Π2 ∪ (−1, 1)2,

I analytic on Π2,

I and real-valued on (−1, 1)2.

analytically continues to D.

⇒

6 / 82
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Boundary values of Pick functions
An analytic function

f : Πn → Π

is called a Pick function.

I Charles Löwner showed that a function f : (−1, 1)→ R is matrix
monotone in the sense that for any two self-adjoint matrices A,B
with spectrum in (−1, 1), such that

A ≤ B ⇒ f (A) ≤ f (B)

must actually be the restriction of an analytic function on
Π ∪ (−1, 1) ∪ −Π whose restriction to Π is a Pick function.

I Löwner’s theorem is valuable tool in the theory of matrix inequalities
and allows you to simplify some problems.

I Agler, McCarthy and Young showed that an analogue of Löwner’s
holds for Pick functions in several variables.

I P. showed that a phenomenon similar to the edge-of-the-wedge
theorem holds for the boundary values of Pick functions- a
wedge-of-the-edge theorem.
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The wedge-of-the-edge theorem (P.)

The is an open set D containing 0 such that for any ε > 0, every
function f : Π2 ∪ (−1, ε)2 ∪ (−ε, 1)2 → Π which is

I continuous on Π2 ∪ (−1, ε)2 ∪ (−ε, 1)2,

I analytic on Π2,

I and real-valued on (−1, ε)2 ∪ (−ε, 1)2.

analytically continues to D.

⇒ D

8 / 82
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Example: The geometric mean
√
xy

The function
√
xy is defined and real on [−1, 0]2 ∪ [0, 1]. Also, it

analytically continues to Π2 as a Pick function.

However, it cannot extend
to a neighborhood of 0 because

√
xy has a branch cut. So, the small

overlap at 0 is necessary.
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Example: A rational function with singularities on the
hyperbola txy = 1

The function for any t, the function x
1−txy defines a Pick function.

Furthermore, each of these is real-valued on
(−ε, 1)× (−1, ε) ∪ (−1, ε)× (−ε, 1) for small enough ε. However, for
large t, the singular set of these function approach to being the x and y
axes.

That is, there is not a fixed set D so that all the functions in this
family analytically continue to a neighborhood of 0. So, orientation
matters.
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A detailed wedge-of-the-edge theorem (P.)

Theorem
For any Pick function in two variables f which has a continuous
real-valued extension to (−1, ε)2 ∪ (−ε, 1)2,

| f
(n)(0, 0)[u, v ]

n!
| ≤ 5n max{|u|, |v |}n|f

′
(0, 0)[1, 1]|.

(Here, f (n)(0, 0)[u, v ] = dn

dtn f (tu, tv)|t=0.)

Namely, each f analytically
continues to

D = {(z ,w) ∈ C2||z | < 1

5
, |w | < 1

5
}

and, for all (z ,w) ∈ D

|f (z ,w)− f (0)| ≤ 1

1− 5 max{|z |, |w |}
|f

′
(0, 0)[1, 1]|.
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Some inequalities I

How the results were obtained:

Lemma
Let f be a Pick function in two variables which has a continuous
real-valued extension to (−1, ε)2 ∪ (−ε, 1)2. Then, for any
(u, v) ∈ (0, 1)2,

|f
′
(0, 0)[u, v ]| ≤ |f

′
(0, 0)[1, 1]|.

The above is a special case of the Julia inequality obtained by Agler,
McCarthy, and Young on the bidisk transformed to be an inequality on
Π2. On the other hand, it can be obtained using realization theory,
specifically the Nevanlinna representations obtained by Agler, Tully-Doyle
and Young.
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Some inequalities II

Another inequality:

Lemma
Let f be a Pick function in two variables which has a continuous
real-valued extension to (−1, ε)2 ∪ (−ε, 1)2. Then, (u, v) ∈ (0, 1)2,

| f
(n)(0, 0)[u, v ]

n!
| ≤ |f

′
(0, 0)[u, v ]|

The above follows from the fact that

g(h) = f (hu, hv) =
∞∑
i=0

aiz
i

is a Pick function in one variable which extends continuously to (−1, 1).
By a deep result of Nevanlinna, there is a measure µ supported on [−1, 1]
so that for i ≥ 0, ai+1 =

∫
[−1,1] x

ndµ.Thus, ai+1 ≤ a1, which implies the

claim.
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real-valued extension to (−1, ε)2 ∪ (−ε, 1)2. Then, (u, v) ∈ (0, 1)2,

| f
(n)(0, 0)[u, v ]

n!
| ≤ |f

′
(0, 0)[u, v ]|

The above follows from the fact that

g(h) = f (hu, hv) =
∞∑
i=0

aiz
i

is a Pick function in one variable which extends continuously to (−1, 1).
By a deep result of Nevanlinna, there is a measure µ supported on [−1, 1]
so that for i ≥ 0, ai+1 =

∫
[−1,1] x

ndµ.Thus, ai+1 ≤ a1, which implies the
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Some inequalities III

Another inequality follows from the other two:

Lemma
Let f be a Pick function in two variables which has a continuous
real-valued extension to (−1, ε)2 ∪ (−ε, 1)2. Then, (u, v) ∈ (0, 1)2,

| f
(n)(0, 0)[u, v ]

n!
| ≤ max{u, v}n|f

′
(0, 0)[1, 1]|

We lifted the above from (u, v) ∈ (0, 1)2 to all C2 via estimates found by
Walter Gautschi for the norm of the inverse of a Vandermonde matrix.

Lemma
Let f be a Pick function in two variables which has a continuous
real-valued extension to (−1, ε)2 ∪ (−ε, 1)2. Then, (u, v) ∈ C2,

| f
(n)(0, 0)[u, v ]

n!
| ≤ 5n max{u, v}n|f

′
(0, 0)[1, 1]|.
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A detailed wedge-of-the-edge theorem (P.)

Theorem
For any Pick function in two variables f which has a continuous
real-valued extension to (−1, ε)2 ∪ (−ε, 1)2,

| f
(n)(0, 0)[u, v ]

n!
| ≤ 5n max{|u|, |v |}n|f

′
(0, 0)[1, 1]|.

(Here, f (n)(0, 0)[u, v ] = dn

dtn f (tu, tv)|t=0.)

Namely, each f analytically
continues to

D = {(z ,w) ∈ C2||z | < 1

5
, |w | < 1

5
}

and, for all (z ,w) ∈ D

|f (z ,w)− f (0)| ≤ 1

1− 5 max{|z |, |w |}
|f

′
(0, 0)[1, 1]|.
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An application: relaxing the Agler-McCarthy-Young
Löwner theorem in several variables

Agler, McCarthy and Young showed that any differentiable matrix
monotone function on (0, 1)2 analytically continues to Π2 as a Pick
function.

Recently, we showed that the differentiability hypothesis can be
dropped using inequalities arising from the wedge-of-the-edge theorem
by:

I mollifying such a function (A relaxation technique which ”blurs” a
function, making it differentiable and subject to the aforementioned
theorem.)

I As we mollify the function less and less, we recover the original
function. So, applying normal families argument, we can show that
the original function was differentiable.

That is, any matrix monotone function on (0, 1)2 analytically continues
to Π2 as a Pick function.
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