Matrix monotonicity in several noncommuting variables

J. E. Pascoe
University of California, San Diego
jpascoe@math.ucsd.edu

October 20, 2013

Joint work with Ryan Tully-Doyle.

The functional calculus

Let $f:(a, b) \rightarrow \mathbb{R}$.

The functional calculus

Let $f:(a, b) \rightarrow \mathbb{R}$.
Given a self-adjoint matrix A with spectrum in (a, b) diagonalized by a unitary matrix U, that is,

$$
A=U^{*}\left(\begin{array}{ccc}
\lambda_{1} & 0 & \ldots \\
0 & \lambda_{2} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right) U
$$

The functional calculus

Let $f:(a, b) \rightarrow \mathbb{R}$.
Given a self-adjoint matrix A with spectrum in (a, b) diagonalized by a unitary matrix U, that is,

$$
A=U^{*}\left(\begin{array}{ccc}
\lambda_{1} & 0 & \ldots \\
0 & \lambda_{2} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right) U
$$

we define the expression $f(A)$ via the following formula.

$$
f(A)=U^{*}\left(\begin{array}{ccc}
f\left(\lambda_{1}\right) & 0 & \cdots \\
0 & f\left(\lambda_{2}\right) & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right) U
$$

Matrix ordering

We say $A \leq B$ if $B-A$ is positive semidefinite. That is, $B-A \geq 0$.

Matrix ordering

We say $A \leq B$ if $B-A$ is positive semidefinite. That is, $B-A \geq 0$. Given a self-adjoint matrix C diagonalized by a unitary matrix U, written as,

$$
A=U^{*}\left(\begin{array}{ccc}
\lambda_{1} & 0 & \ldots \\
0 & \lambda_{2} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right) U
$$

C is postive semidefinite if each $\lambda_{i} \geq 0$.

Matrix monotone functions

Let $f:(a, b) \rightarrow \mathbb{R}$.

Matrix monotone functions

Let $f:(a, b) \rightarrow \mathbb{R}$.
We say f is matrix monotone if, for any natural number $n \in \mathbb{N}$, and any pair of n by n self-adjoint matrices A and B with spectrum in (a, b),

$$
A \leq B \Rightarrow f(A) \leq f(B)
$$

Matrix monotone \neq classically monotone

Let $f(x)=x^{3}$. The function f is monotone increasing on all of \mathbb{R}.

Matrix monotone \neq classically monotone

Let $f(x)=x^{3}$. The function f is monotone increasing on all of \mathbb{R}. Note,

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \leq\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

Matrix monotone \neq classically monotone

Let $f(x)=x^{3}$. The function f is monotone increasing on all of \mathbb{R}. Note,

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \leq\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

since

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)-\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

is positive semidefinite.

Matrix monotone \neq classically monotone

Let $f(x)=x^{3}$. The function f is monotone increasing on all of \mathbb{R}. Note,

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \leq\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

since

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)-\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

is positive semidefinite.
However,

$$
f\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
4 & 4 \\
4 & 4
\end{array}\right), f\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
13 & 8 \\
8 & 5
\end{array}\right)
$$

Matrix monotone \neq classically monotone

Let $f(x)=x^{3}$. The function f is monotone increasing on all of \mathbb{R}. Note,

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \leq\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

since

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)-\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

is positive semidefinite.
However,

$$
f\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
4 & 4 \\
4 & 4
\end{array}\right), f\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
13 & 8 \\
8 & 5
\end{array}\right)
$$

but $\left(\begin{array}{cc}13 & 8 \\ 8 & 5\end{array}\right)-\left(\begin{array}{ll}4 & 4 \\ 4 & 4\end{array}\right)=\left(\begin{array}{ll}9 & 4 \\ 4 & 1\end{array}\right)$ is not positive semidefinite since the determinant is negative. Thus, x^{3} is not matrix monotone on all of \mathbb{R}.

Matrix monotone functions exist

Let $f(x)=-x^{-1}$.

Matrix monotone functions exist

Let $f(x)=-x^{-1}$.
We will show f is matrix monotone on $(0, \infty)$.

Matrix monotone functions exist

Let $f(x)=-x^{-1}$.
We will show f is matrix monotone on $(0, \infty)$.
Let $X \leq Y$ with spectrum in the positive reals.

Matrix monotone functions exist

Let $f(x)=-x^{-1}$.
We will show f is matrix monotone on $(0, \infty)$.
Let $X \leq Y$ with spectrum in the positive reals.
Let $H=Y-X$. Consider the function $f(X+t H)$.

Matrix monotone functions exist

Let $f(x)=-x^{-1}$.
We will show f is matrix monotone on $(0, \infty)$.
Let $X \leq Y$ with spectrum in the positive reals.
Let $H=Y-X$. Consider the function $f(X+t H)$. By the fundamental theorem of calculus

$$
f(Y)-f(X)=\int_{0}^{1} \frac{d}{d t} f(X+t H) d t
$$

So, it is enough to show that $\frac{d}{d t} f(X+t H)$ is postive semidefininte.

Matrix monotone functions exist

$$
\begin{aligned}
\frac{d}{d t} f(X+t H) & =\lim _{t \rightarrow 0} \frac{f(X+t H)-f(X)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\left(-(X+t H)^{-1}\right)-\left(-X^{-1}\right)}{t} \\
& =\lim _{t \rightarrow 0} \frac{(X+t H)^{-1}(X+t H-X) X^{-1}}{t} \\
& =\lim _{t \rightarrow 0} \frac{(X+t H)^{-1}(t H) X^{-1}}{t} \\
& =X^{-1} H X^{-1} .
\end{aligned}
$$

Matrix monotone functions exist

$$
\begin{aligned}
\frac{d}{d t} f(X+t H) & =\lim _{t \rightarrow 0} \frac{f(X+t H)-f(X)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\left(-(X+t H)^{-1}\right)-\left(-X^{-1}\right)}{t} \\
& =\lim _{t \rightarrow 0} \frac{(X+t H)^{-1}(X+t H-X) X^{-1}}{t} \\
& =\lim _{t \rightarrow 0} \frac{(X+t H)^{-1}(t H) X^{-1}}{t} \\
& =X^{-1} H X^{-1} .
\end{aligned}
$$

Since, $H=Y-X \geq 0$, the derivative

$$
\frac{d}{d t} f(X+t H)=X^{-1} H X^{-1}=\left(H^{1 / 2} X^{-1}\right)^{*} H^{1 / 2} X^{-1} \geq 0
$$

Matrix monotone functions exist

$$
\begin{aligned}
\frac{d}{d t} f(X+t H) & =\lim _{t \rightarrow 0} \frac{f(X+t H)-f(X)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\left(-(X+t H)^{-1}\right)-\left(-X^{-1}\right)}{t} \\
& =\lim _{t \rightarrow 0} \frac{(X+t H)^{-1}(X+t H-X) X^{-1}}{t} \\
& =\lim _{t \rightarrow 0} \frac{(X+t H)^{-1}(t H) X^{-1}}{t} \\
& =X^{-1} H X^{-1} .
\end{aligned}
$$

Since, $H=Y-X \geq 0$, the derivative

$$
\frac{d}{d t} f(X+t H)=X^{-1} H X^{-1}=\left(H^{1 / 2} X^{-1}\right)^{*} H^{1 / 2} X^{-1} \geq 0
$$

So, x^{-1} is matrix monotone.

Löwner's theorem

Let \mathbb{H} denote the upper half plane in \mathbb{C}.

Löwner's theorem

Let \mathbb{H} denote the upper half plane in \mathbb{C}.
Theorem (Löwner 1934)
Let $f:(a, b) \rightarrow \mathbb{R}$ be a bounded Borel function. The function f is matrix monotone if and only if f analytically continues to \mathbb{H} as function $F: \mathbb{H} \cup(a, b) \rightarrow \overline{\mathbb{H}}$ which is continuous on $\mathbb{H} \cup(a, b)$.

Löwner's theorem

Let \mathbb{H} denote the upper half plane in \mathbb{C}.
Theorem (Löwner 1934)
Let $f:(a, b) \rightarrow \mathbb{R}$ be a bounded Borel function. The function f is matrix monotone if and only if f analytically continues to \mathbb{H} as function $F: \mathbb{H} \cup(a, b) \rightarrow \overline{\mathbb{H}}$ which is continuous on $\mathbb{H} \cup(a, b)$.
For example $x^{1 / 3}, \log x$ and $-\frac{1}{x}$ are matrix monotone on $(1,2)$ but x^{3} and e^{x} are not.

Löwner's theorem in several commuting variables

Let \mathbb{H} denote the upper half plane in \mathbb{C}.

Löwner's theorem in several commuting variables

Let \mathbb{H} denote the upper half plane in \mathbb{C}.
Theorem (Agler, McCarthy, Young 2013)
Let $f:(a, b)^{d} \rightarrow \mathbb{R}$ be a rational function. The function f is matrix monotone when lifted to commuting tuples of matrices via the functional calculus then f analytically continues to \mathbb{H}^{d} as function $F: \mathbb{H}^{d} \cup(a, b)^{d} \rightarrow \overline{\mathbb{H}}$ which is continuous on $\mathbb{H}^{d} \cup(a, b)^{d}$.

Löwner's theorem in several commuting variables

Let \mathbb{H} denote the upper half plane in \mathbb{C}.
Theorem (Agler, McCarthy, Young 2013)
Let $f:(a, b)^{d} \rightarrow \mathbb{R}$ be a rational function. The function f is matrix monotone when lifted to commuting tuples of matrices via the functional calculus then f analytically continues to \mathbb{H}^{d} as function $F: \mathbb{H}^{d} \cup(a, b)^{d} \rightarrow \overline{\mathbb{H}}$ which is continuous on $\mathbb{H}^{d} \cup(a, b)^{d}$.
The continuation of a matrix monotone rational function is in the conformal analogue of the Schur-Agler class for the upper half-plane, the Löwner class.

Löwner's theorem

What is Löwner's theorem for functions of several noncommuting variables?

Löwner's theorem

What is Löwner's theorem for functions of several noncommuting variables?
Can we determine whether some expression with matrix inputs

$$
f\left(X_{1}, X_{2}\right)=\sqrt{X_{1} X_{2}+X_{2} X_{1}}
$$

is matrix monotone in the sense that

$$
X_{1} \leq Y_{1}, X_{2} \leq Y_{2} \Rightarrow f\left(X_{1}, X_{2}\right) \leq f\left(Y_{1}, Y_{2}\right) ?
$$

Löwner's theorem

What is Löwner's theorem for functions of several noncommuting variables?
Can we determine whether some expression with matrix inputs

$$
f\left(X_{1}, X_{2}\right)=\sqrt{X_{1} X_{2}+X_{2} X_{1}}
$$

is matrix monotone in the sense that

$$
X_{1} \leq Y_{1}, X_{2} \leq Y_{2} \Rightarrow f\left(X_{1}, X_{2}\right) \leq f\left(Y_{1}, Y_{2}\right) ?
$$

We will now establish a framework for understanding power series several noncommuting variables.

Words

Let \mathcal{I} denote the set of words in the letters x_{1}, \ldots, x_{d}. Let e denote the empty word.

Words

Let \mathcal{I} denote the set of words in the letters x_{1}, \ldots, x_{d}. Let e denote the empty word.

For example $x_{1} x_{2}$ is a word in the letters x_{1} and x_{2}.

Words

Let \mathcal{I} denote the set of words in the letters x_{1}, \ldots, x_{d}. Let e denote the empty word.

For example $x_{1} x_{2}$ is a word in the letters x_{1} and x_{2}. So is $x_{1} x_{2} x_{2} x_{1} x_{1}$.

Words

Let \mathcal{I} denote the set of words in the letters x_{1}, \ldots, x_{d}. Let e denote the empty word.

For example $x_{1} x_{2}$ is a word in the letters x_{1} and x_{2}.
So is $x_{1} x_{2} x_{2} x_{1} x_{1}$. Note $x_{1} x_{2} \neq x_{2} x_{1}$.

Words

Let \mathcal{I} denote the set of words in the letters x_{1}, \ldots, x_{d}. Let e denote the empty word.

For example $x_{1} x_{2}$ is a word in the letters x_{1} and x_{2}.
So is $x_{1} x_{2} x_{2} x_{1} x_{1}$. Note $x_{1} x_{2} \neq x_{2} x_{1}$.

Words carry an involution $*$ which reverses their letters.

Words

Let \mathcal{I} denote the set of words in the letters x_{1}, \ldots, x_{d}. Let e denote the empty word.

For example $x_{1} x_{2}$ is a word in the letters x_{1} and x_{2}.
So is $x_{1} x_{2} x_{2} x_{1} x_{1}$.
Note $x_{1} x_{2} \neq x_{2} x_{1}$.

Words carry an involution $*$ which reverses their letters.

For example $\left(x_{1} x_{2}\right)^{*}=x_{2} x_{1}$.

Free monomials

Let $X=\left(X_{1}, \ldots, X_{d}\right)$ be a tuple of n by n matrices.
Let w be a word in the letters x_{1}, \ldots, x_{d}.

Free monomials

Let $X=\left(X_{1}, \ldots, X_{d}\right)$ be a tuple of n by n matrices.
Let w be a word in the letters x_{1}, \ldots, x_{d}.
The words correspond to multi-indices in the noncommuting case.
For example, $X^{x_{1} x_{2}}+7 X^{x_{1} x_{2} x_{2} x_{1} x_{1}}=X_{1} X_{2}+7 X_{1} X_{2} X_{2} X_{1} X_{1}$.

Free monomials

Let $X=\left(X_{1}, \ldots, X_{d}\right)$ be a tuple of n by n matrices.
Let w be a word in the letters x_{1}, \ldots, x_{d}.
The words correspond to multi-indices in the noncommuting case.
For example, $X^{x_{1} x_{2}}+7 X^{x_{1} x_{2} x_{2} x_{1} x_{1}}=X_{1} X_{2}+7 X_{1} X_{2} X_{2} X_{1} X_{1}$. We formally define X^{w} recursively via the relations

Free monomials

Let $X=\left(X_{1}, \ldots, X_{d}\right)$ be a tuple of n by n matrices.
Let w be a word in the letters x_{1}, \ldots, x_{d}.
The words correspond to multi-indices in the noncommuting case.
For example, $X^{x_{1} x_{2}}+7 X^{x_{1} x_{2} x_{2} x_{1} x_{1}}=X_{1} X_{2}+7 X_{1} X_{2} X_{2} X_{1} X_{1}$. We formally define X^{w} recursively via the relations

$$
\begin{gathered}
X^{x_{i} w}=X_{i} X^{w} \\
X^{e}=l .
\end{gathered}
$$

Free monomials

Let $X=\left(X_{1}, \ldots, X_{d}\right)$ be a tuple of n by n matrices.
Let w be a word in the letters x_{1}, \ldots, x_{d}.
The words correspond to multi-indices in the noncommuting case.
For example, $X^{x_{1} x_{2}}+7 X^{x_{1} x_{2} x_{2} x_{1} x_{1}}=X_{1} X_{2}+7 X_{1} X_{2} X_{2} X_{1} X_{1}$. We formally define X^{w} recursively via the relations

$$
\begin{gathered}
X^{x_{i} w}=X_{i} X^{w} \\
X^{e}=l .
\end{gathered}
$$

Free derivatives

The expression

$$
f(X)=\sum_{I \in \mathcal{I}} c_{l} X^{\prime}
$$

denotes formal free power series in d variables with coefficients $c_{l} \in \mathbb{C}$.

Free derivatives

The expression

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

denotes formal free power series in d variables with coefficients $c_{l} \in \mathbb{C}$.
The free formal derivative of f at $X=\left(X_{1}, \ldots, X_{d}\right)$ in the direction $H=\left(H_{1}, \ldots, H_{d}\right)$ denoted $\operatorname{Df}(X)[H]$ can be taken via the following relations where $x_{i}(X)=X_{i}$.

Free derivatives

The expression

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

denotes formal free power series in d variables with coefficients $c_{l} \in \mathbb{C}$.
The free formal derivative of f at $X=\left(X_{1}, \ldots, X_{d}\right)$ in the direction $H=\left(H_{1}, \ldots, H_{d}\right)$ denoted $\operatorname{Df}(X)[H]$ can be taken via the following relations where $x_{i}(X)=X_{i}$.
On coordinate functions $D x_{i}(X)[H]=H_{i}$,

Free derivatives

The expression

$$
f(X)=\sum_{I \in \mathcal{I}} c_{l} X^{\prime}
$$

denotes formal free power series in d variables with coefficients $c_{l} \in \mathbb{C}$.
The free formal derivative of f at $X=\left(X_{1}, \ldots, X_{d}\right)$ in the direction $H=\left(H_{1}, \ldots, H_{d}\right)$ denoted $\operatorname{Df}(X)[H]$ can be taken via the following relations where $x_{i}(X)=X_{i}$.
On coordinate functions $D x_{i}(X)[H]=H_{i}$,
Product Rule $D[f g](X)[H]=(D f(X)[H]) g+f(D g(X)[H])$, and

Free derivatives

The expression

$$
f(X)=\sum_{I \in \mathcal{I}} c_{l} X^{\prime}
$$

denotes formal free power series in d variables with coefficients $c_{l} \in \mathbb{C}$.
The free formal derivative of f at $X=\left(X_{1}, \ldots, X_{d}\right)$ in the direction $H=\left(H_{1}, \ldots, H_{d}\right)$ denoted $\operatorname{Df}(X)[H]$ can be taken via the following relations where $x_{i}(X)=X_{i}$.
On coordinate functions $D x_{i}(X)[H]=H_{i}$,
Product Rule $D[f g](X)[H]=(D f(X)[H]) g+f(D g(X)[H])$, and Linearity $D[f+g](X)[H]=D[f](X)[H]+D[g](X)[H]$.

Free derivatives

The expression

$$
f(X)=\sum_{I \in \mathcal{I}} c_{l} X^{\prime}
$$

denotes formal free power series in d variables with coefficients $c_{l} \in \mathbb{C}$.
The free formal derivative of f at $X=\left(X_{1}, \ldots, X_{d}\right)$ in the direction $H=\left(H_{1}, \ldots, H_{d}\right)$ denoted $\operatorname{Df}(X)[H]$ can be taken via the following relations where $x_{i}(X)=X_{i}$.
On coordinate functions $D x_{i}(X)[H]=H_{i}$,
Product Rule $D[f g](X)[H]=(D f(X)[H]) g+f(D g(X)[H])$, and Linearity $D[f+g](X)[H]=D[f](X)[H]+D[g](X)[H]$.
Thus, the derivative of $f\left(X_{1}, X_{2}\right)=X_{1} X_{2}$ is

$$
D f(X)[H]=H_{1} X_{2}+X_{1} H_{2}
$$

Example of free derivative

$$
\text { Let } f\left(X_{1}, X_{2}\right)=6 X_{1} X_{2}+7 X_{1}^{2}-8 X_{2} .
$$

Example of free derivative

Let $f\left(X_{1}, X_{2}\right)=6 X_{1} X_{2}+7 X_{1}^{2}-8 X_{2}$.
The free derivative of $f\left(X_{1}, X_{2}\right)$ is given by the formula

$$
D f\left(X_{1}, X_{2}\right)\left[H_{1}, H_{2}\right]=6 H_{1} X_{2}+6 X_{1} H_{2}+7 H_{1} X_{1}+7 X_{1} H_{1}-8 H_{2}
$$

Example of free derivative

Let $f\left(X_{1}, X_{2}\right)=6 X_{1} X_{2}+7 X_{1}^{2}-8 X_{2}$.
The free derivative of $f\left(X_{1}, X_{2}\right)$ is given by the formula

$$
\operatorname{Df}\left(X_{1}, X_{2}\right)\left[H_{1}, H_{2}\right]=6 H_{1} X_{2}+6 X_{1} H_{2}+7 H_{1} X_{1}+7 X_{1} H_{1}-8 H_{2}
$$

For self-adjoint X_{1}, X_{2} we will rewrite derivatives in the form:

$$
\begin{gathered}
\operatorname{Df}\left(X_{1}, X_{2}\right)\left[H_{1}, H_{2}\right]= \\
\left(\begin{array}{l}
1 \\
X_{1} \\
X_{2}
\end{array}\right)^{*}\left(\begin{array}{ccc}
0 & 7 H_{1} & 6 H_{1} \\
7 H_{1} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
X_{1} \\
X_{2}
\end{array}\right)+\left(\begin{array}{c}
1 \\
X_{1} \\
X_{2}
\end{array}\right)^{*}\left(\begin{array}{ccc}
-8 H_{2} & 0 & 0 \\
6 H_{2} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
X_{1} \\
X_{2}
\end{array}\right) .
\end{gathered}
$$

Example of free derivative

Let $f\left(X_{1}, X_{2}\right)=6 X_{1} X_{2}+7 X_{1}^{2}-8 X_{2}$.
The free derivative of $f\left(X_{1}, X_{2}\right)$ is given by the formula

$$
\operatorname{Df}\left(X_{1}, X_{2}\right)\left[H_{1}, H_{2}\right]=6 H_{1} X_{2}+6 X_{1} H_{2}+7 H_{1} X_{1}+7 X_{1} H_{1}-8 H_{2}
$$

For self-adjoint X_{1}, X_{2} we will rewrite derivatives in the form:

$$
\begin{gathered}
\operatorname{Df}\left(X_{1}, X_{2}\right)\left[H_{1}, H_{2}\right]= \\
\left(\begin{array}{l}
1 \\
X_{1} \\
X_{2}
\end{array}\right)^{*}\left(\begin{array}{ccc}
0 & 7 H_{1} & 6 H_{1} \\
7 H_{1} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
X_{1} \\
X_{2}
\end{array}\right)+\left(\begin{array}{c}
1 \\
X_{1} \\
X_{2}
\end{array}\right)^{*}\left(\begin{array}{ccc}
-8 H_{2} & 0 & 0 \\
6 H_{2} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
X_{1} \\
X_{2}
\end{array}\right) .
\end{gathered}
$$

Example in one variable

$$
\text { Let } f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} .
$$

Example in one variable

Let $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$.
Taking the ordinary derivative $f^{\prime}(x)=\sum_{i=1}^{\infty} i a_{i} x^{i-1}$ which for real x is given by the formula:

Example in one variable

Let $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$.
Taking the ordinary derivative $f^{\prime}(x)=\sum_{i=1}^{\infty} i a_{i} x^{i-1}$ which for real x is given by the formula:

$$
f^{\prime}(x)=\left(\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots
\end{array}\right)^{*}\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & \ldots \\
a_{2} & a_{3} & a_{4} & \ldots \\
a_{3} & a_{4} & a_{5} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)\left(\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots
\end{array}\right)
$$

Example in one variable

Let $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$.
Taking the ordinary derivative $f^{\prime}(x)=\sum_{i=1}^{\infty} i a_{i} x^{i-1}$ which for real x is given by the formula:

$$
f^{\prime}(x)=\left(\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots
\end{array}\right)^{*}\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & \ldots \\
a_{2} & a_{3} & a_{4} & \ldots \\
a_{3} & a_{4} & a_{5} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)\left(\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots
\end{array}\right)
$$

Example in one variable

Let $f(X)=\sum_{i=0}^{\infty} a_{i} X^{i}$.

Example in one variable

Let $f(X)=\sum_{i=0}^{\infty} a_{i} X^{i}$.
The free derivative of f is given by the formula:

Example in one variable

Let $f(X)=\sum_{i=0}^{\infty} a_{i} X^{i}$.
The free derivative of f is given by the formula:

$$
\operatorname{Df}(X)[H]=\left(\begin{array}{c}
1 \\
X \\
X^{2} \\
\vdots
\end{array}\right)^{*}\left(\begin{array}{cccc}
a_{1} H & a_{2} H & a_{3} H & \ldots \\
a_{2} H & a_{3} H & a_{4} H & \ldots \\
a_{3} H & a_{4} H & a_{5} H & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)\left(\begin{array}{c}
1 \\
X \\
X^{2} \\
\vdots
\end{array}\right) .
$$

Example in one variable

Let $f(X)=\sum_{i=0}^{\infty} a_{i} X^{i}$.
The free derivative of f is given by the formula:

$$
D f(X)[H]=\left(\begin{array}{c}
1 \\
X \\
X^{2} \\
\vdots
\end{array}\right)^{*}\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & \ldots \\
a_{2} & a_{3} & a_{4} & \cdots \\
a_{3} & a_{4} & a_{5} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)\left(\begin{array}{c}
1 \\
X \\
X^{2} \\
\vdots
\end{array}\right) .
$$

Example in one variable

Let $f(X)=\sum_{i=0}^{\infty} a_{i} X^{i}$.
The free derivative of f is given by the formula:

$$
D f(X)[H]=\left(\begin{array}{c}
1 \\
X \\
X^{2} \\
\vdots
\end{array}\right)^{*}\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & \ldots \\
a_{2} & a_{3} & a_{4} & \cdots \\
a_{3} & a_{4} & a_{5} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)\left(\begin{array}{c}
1 \\
X \\
X^{2} \\
\vdots
\end{array}\right) .
$$

If the above power series converges on a neighborhood of $\overline{\mathbb{D}}$, classically by theorems of Nevanlinna and Löwner, it was shown that f is matrix monotone if and only if

$$
\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & \ldots \\
a_{2} & a_{3} & a_{4} & \cdots \\
a_{3} & a_{4} & a_{5} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \geq 0 .
$$

Löwner's theorem in several variables at 0

For $X=\left(X_{1}, \ldots X_{d}\right)$, let $\|X\|=\max _{i}\left\|X_{i}\right\|$.
Theorem (P., Tully-Doyle)
Let

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

be a free power series in d variables which converges absolutely for all X such that $\|X\|<d+\epsilon$. The function f is matrix monotone on the domain of convergence, that is,

$$
\forall_{1 \leq i \leq d} X_{i} \leq Y_{i} \Rightarrow f(X) \leq f(Y),
$$

Löwner's theorem in several variables at 0

For $X=\left(X_{1}, \ldots X_{d}\right)$, let $\|X\|=\max _{i}\left\|X_{i}\right\|$.
Theorem (P., Tully-Doyle)
Let

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

be a free power series in d variables which converges absolutely for all X such that $\|X\|<d+\epsilon$. The function f is matrix monotone on the domain of convergence, that is,

$$
\forall_{1 \leq i \leq d} X_{i} \leq Y_{i} \Rightarrow f(X) \leq f(Y)
$$

if and only if

Löwner's theorem in several variables at 0

For $X=\left(X_{1}, \ldots X_{d}\right)$, let $\|X\|=\max _{i}\left\|X_{i}\right\|$.
Theorem (P., Tully-Doyle)
Let

$$
f(X)=\sum_{I \in \mathcal{I}} c_{l} X^{I}
$$

be a free power series in d variables which converges absolutely for all X such that $\|X\|<d+\epsilon$. The function f is matrix monotone on the domain of convergence, that is,

$$
\forall_{1 \leq i \leq d} X_{i} \leq Y_{i} \Rightarrow f(X) \leq f(Y),
$$

if and only if for each n, f analytically continues as a function on d-tuples of n by n matrices over \mathbb{C} with positive imaginary part (where Im $\left.W=\left(W-W^{*}\right) / 2 i\right)$ so that

$$
\forall_{1 \leq i \leq d} \operatorname{Im} Z_{i}>0 \Rightarrow \operatorname{Im} f(Z)>0 .
$$

Coefficient condtion at 0

The Löwner theorem is proven using the following result.

Theorem (P., Tully-Doyle)

Let

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

be a free power series in d variables which converges absolutely for all X such that $\|X\|<d+\epsilon$. The function f is matrix monotone on the domain of convergence if and only if each x_{k}-localizing matrix

$$
C^{k}=\left(c_{l^{*} x_{k} J}\right)_{I, J \in \mathcal{I}}
$$

is positive semidefinite.

Models and the localizing matrices

In fact,

$$
D f(X)[H]=\sum_{k=1}^{d}\left(X^{\prime}\right)_{I \in \mathcal{I}}^{*}\left(c_{I^{*} x_{k} J} H_{k}\right)_{I, J \in \mathcal{I}}\left(X^{J}\right)_{J \in \mathcal{I}} .
$$

Models and the localizing matrices

In fact,

$$
D f(X)[H]=\sum_{k=1}^{d}\left(X^{\prime}\right)_{I \in \mathcal{I}}^{*}\left(c_{I^{*} x_{k} J} H_{k}\right)_{I, J \in \mathcal{I}}\left(X^{J}\right)_{J \in \mathcal{I}}
$$

Let $m_{X}=\left(X^{\prime}\right)_{I \in \mathcal{I}}$. If each $C^{k}=\left(c_{I^{*} x_{k} J}\right)_{I, J \in \mathcal{I}} \geq 0$, the form of the expression

$$
D f(X)[H]=\sum_{k=1}^{d} m_{X}^{*}{ }_{H_{k}}^{\otimes} m_{X}
$$

Models and the localizing matrices

In fact,

$$
D f(X)[H]=\sum_{k=1}^{d}\left(X^{\prime}\right)_{I \in \mathcal{I}}^{*}\left(c_{I^{*} x_{k} J} H_{k}\right)_{I, J \in \mathcal{I}}\left(X^{J}\right)_{J \in \mathcal{I}}
$$

Let $m_{X}=\left(X^{\prime}\right)_{I \in \mathcal{I}}$. If each $C^{k}=\left(c_{I^{*} x_{k} J}\right)_{I, J \in \mathcal{I}} \geq 0$, the form of the expression

$$
D f(X)[H]=\sum_{k=1}^{d} m_{X}^{*}{ }_{H_{k}}^{\otimes} m_{X}
$$

implies that if each $H_{k} \geq 0$ then $\operatorname{Df}(X)[H] \geq 0$.

Models and the localizing matrices

In fact,

$$
D f(X)[H]=\sum_{k=1}^{d}\left(X^{\prime}\right)_{I \in \mathcal{I}}^{*}\left(c_{I^{*} x_{k}} H_{k}\right)_{I, J \in \mathcal{I}}\left(X^{J}\right)_{J \in \mathcal{I}}
$$

Let $m_{X}=\left(X^{\prime}\right)_{I \in \mathcal{I}}$. If each $C^{k}=\left(C_{I^{*} x_{k} J}\right)_{I, J \in \mathcal{I}} \geq 0$, the form of the expression

$$
D f(X)[H]=\sum_{k=1}^{d} m_{X}^{*}{ }_{H_{k}}^{\otimes} m_{X}
$$

implies that if each $H_{k} \geq 0$ then $\operatorname{Df}(X)[H] \geq 0$.
Expressions for the second derivative similar to the above have been used by Helton and McCullough to understand free convexity and positive polynomials.

Models continued

Finally, via some relations in free analysis and by taking the square root of each C^{k} we obtain

$$
f(X)-f(Y)=\sum_{k=1}^{d} m_{Y}^{*} \begin{array}{ccc}
\left(C^{k}\right)^{1 / 2} & l & \left(C^{k}\right)^{1 / 2} \\
& l & X_{k}-Y_{k}
\end{array} \overbrace{X} \quad m_{X}
$$

which can be used to derive the analytic continuation of f via a lurking isometry argument.

Localizing matrix positivity

Let

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

be a free power series in d variables which converges absolutely and is matrix monotone for all X such that $\|X\|<d+\epsilon$.

Localizing matrix positivity

Let

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

be a free power series in d variables which converges absolutely and is matrix monotone for all X such that $\|X\|<d+\epsilon$. To show $C^{k}=\left(c_{l^{*} x_{k}} J\right)_{I, J \in \mathcal{I}} \geq 0$, we show that for any X with $\|X\|<\frac{1}{d}$,

$$
P_{X} C^{k} P_{X} \geq 0
$$

where P_{X} is the projection onto the vector space

$$
V_{X}=\left\{d \in I^{2}(\mathcal{I}) \mid 0=\sum \overline{d_{l}} X^{\prime}\right\}^{\perp}
$$

Localizing matrix positivity

Let

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

be a free power series in d variables which converges absolutely and is matrix monotone for all X such that $\|X\|<d+\epsilon$. To show $C^{k}=\left(c_{l^{*} x_{k}} J\right)_{I, J \in \mathcal{I}} \geq 0$, we show that for any X with $\|X\|<\frac{1}{d}$,

$$
P_{X} C^{k} P_{X} \geq 0
$$

where P_{X} is the projection onto the vector space

$$
V_{X}=\left\{d \in I^{2}(\mathcal{I}) \mid 0=\sum \overline{d_{l}} X^{\prime}\right\}^{\perp}
$$

The V_{X} are finite dimensional and their union over $\|X\|<\frac{1}{d}$ is dense in $I^{2}(\mathcal{I})$.

The space V_{X}

Let

$$
V_{X}=\left\{d \in I^{2}(\mathcal{I}) \mid 0=\sum \overline{d_{l}} X^{\prime}\right\}^{\perp} .
$$

The space V_{X}

Let

$$
V_{X}=\left\{d \in I^{2}(\mathcal{I}) \mid 0=\sum \overline{d_{l}} X^{\prime}\right\}^{\perp} .
$$

The space V_{X} can also be defined as

$$
V_{X}=\operatorname{span}_{i j}\left(X_{i j}^{\prime}\right)_{I \in \mathcal{I}} .
$$

The space V_{X}

Let

$$
V_{X}=\left\{d \in I^{2}(\mathcal{I}) \mid 0=\sum \overline{d_{l}} X^{\prime}\right\}^{\perp} .
$$

The space V_{X} can also be defined as

$$
V_{X}=\operatorname{span}_{i j}\left(X_{i j}^{\prime}\right)_{ı \in \mathcal{I}} .
$$

In one variable,

$$
V_{X}=\operatorname{span}_{\lambda \in \sigma(X)}\left(\lambda^{n}\right)_{n \in \mathbb{Z} \geq 0} .
$$

The space V_{X}

Let

$$
V_{X}=\left\{d \in I^{2}(\mathcal{I}) \mid 0=\sum \overline{d_{I}} X^{\prime}\right\}^{\perp} .
$$

The space V_{X} can also be defined as

$$
V_{X}=\operatorname{span}_{i j}\left(X_{i j}^{\prime}\right)_{I \in \mathcal{I}} .
$$

In one variable,

$$
V_{X}=\operatorname{span}_{\lambda \in \sigma(X)}\left(\lambda^{n}\right)_{n \in \mathbb{Z} \geq 0} .
$$

Furthermore, by the rank nullity theorem

$$
\operatorname{dim} V_{X}=\operatorname{dim} \operatorname{span}_{l \in \mathcal{I}} X^{\prime}
$$

The space V_{X}

Let

$$
V_{X}=\left\{d \in I^{2}(\mathcal{I}) \mid 0=\sum \overline{d_{I}} X^{\prime}\right\}^{\perp} .
$$

The space V_{X} can also be defined as

$$
V_{X}=\operatorname{span}_{i j}\left(X_{i j}^{\prime}\right)_{I \in \mathcal{I}} .
$$

In one variable,

$$
V_{X}=\operatorname{span}_{\lambda \in \sigma(X)}\left(\lambda^{n}\right)_{n \in \mathbb{Z} \geq 0} .
$$

Furthermore, by the rank nullity theorem

$$
\operatorname{dim} V_{X}=\operatorname{dim} \operatorname{span}_{l \in \mathcal{I}} X^{\prime}
$$

In this way, the dimension of the space V_{X} corresponds to the dimension of power series evaluated at X.

The space V_{X}

Let

$$
V_{X}=\left\{d \in I^{2}(\mathcal{I}) \mid 0=\sum \overline{d_{I}} X^{\prime}\right\}^{\perp} .
$$

The space V_{X} can also be defined as

$$
V_{X}=\operatorname{span}_{i j}\left(X_{i j}^{\prime}\right)_{I \in \mathcal{I}} .
$$

In one variable,

$$
V_{X}=\operatorname{span}_{\lambda \in \sigma(X)}\left(\lambda^{n}\right)_{n \in \mathbb{Z} \geq 0} .
$$

Furthermore, by the rank nullity theorem

$$
\operatorname{dim} V_{X}=\operatorname{dim} \operatorname{span}_{l \in \mathcal{I}} X^{\prime}
$$

In this way, the dimension of the space V_{X} corresponds to the dimension of power series evaluated at X.

Localizing matrix positivity II

Let $m_{X}=\left(X^{\prime}\right)_{\ell \in \mathcal{I}}$. Fix X with $\|X\|<\frac{1}{d}$.

Localizing matrix positivity II

Let $m_{X}=\left(X^{\prime}\right)_{l \in \mathcal{I}}$. Fix X with $\|X\|<\frac{1}{d}$.

Let $A, B \in \mathcal{B}\left(I^{2}(\mathcal{I})\right)$.

Localizing matrix positivity II

Let $m_{X}=\left(X^{\prime}\right)_{l \in \mathcal{I}}$. Fix X with $\|X\|<\frac{1}{d}$.

Let $A, B \in \mathcal{B}\left(I^{2}(\mathcal{I})\right)$.

$$
A \quad B
$$

If for every $H, m_{X}^{*} \otimes m_{X}=m_{X}^{*} \otimes m_{X}$,

$$
\begin{array}{ll}
H & H
\end{array}
$$

Localizing matrix positivity II

Let $m_{X}=\left(X^{\prime}\right)_{\iota \in \mathcal{I}}$. Fix X with $\|X\|<\frac{1}{d}$.

Let $A, B \in \mathcal{B}\left(I^{2}(\mathcal{I})\right)$.

$$
A \quad B
$$

If for every $H, m_{X}^{*} \otimes m_{X}=m_{X}^{*} \otimes m_{X}$,

$$
H \quad H
$$

then $P_{X}(A-B) P_{X}=0$ where P_{X} is the projection onto the vector space

$$
V_{X}=\left\{d \in I^{2}(\mathcal{I}) \mid 0=\sum \overline{d_{l}} X^{\prime}\right\}^{\perp}
$$

Localizing matrix positivity III

Thus, given a power series

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

Localizing matrix positivity III

Thus, given a power series

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

which converges absolutely and is matrix monotone for all X such that $\|X\|<d+\epsilon$

Localizing matrix positivity III

Thus, given a power series

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

which converges absolutely and is matrix monotone for all X such that $\|X\|<d+\epsilon$ to show

$$
C^{k}=\left(c_{I^{*} x_{k} J}\right)_{l, J \in \mathcal{I}} \geq 0
$$

Localizing matrix positivity III

Thus, given a power series

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

which converges absolutely and is matrix monotone for all X such that $\|X\|<d+\epsilon$ to show

$$
C^{k}=\left(c_{I^{*} x_{k} J}\right)_{I, J \in \mathcal{I}} \geq 0
$$

we merely need to find a specific C_{X}^{k} such that $P_{X} C_{X}^{k} P_{X}=P_{X} C^{k} P_{X}$.

Localizing matrix positivity III

Thus, given a power series

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

which converges absolutely and is matrix monotone for all X such that $\|X\|<d+\epsilon$ to show

$$
C^{k}=\left(c_{I^{*} x_{k} J}\right)_{I, J \in \mathcal{I}} \geq 0
$$

we merely need to find a specific C_{X}^{k} such that $P_{X} C_{X}^{k} P_{X}=P_{X} C^{k} P_{X}$.
This is a finite dimensional problem since P_{X} is a projection onto a finite dimensional vector space.

Local argument

Let

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

which is matrix monotone for all X with $\|X\|<d+\epsilon$. Let $m_{X}=\left(X^{\prime}\right)_{I \in \mathcal{I}}$. Fix X with $\|X\|<\frac{1}{d}$.

Local argument

Let

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

which is matrix monotone for all X with $\|X\|<d+\epsilon$. Let $m_{X}=\left(X^{\prime}\right)_{I \in \mathcal{I}}$. Fix X with $\|X\|<\frac{1}{d}$.
The derivative at X

$$
D f(X): M_{n}(\mathbb{C})^{d} \rightarrow M_{n}(\mathbb{C})
$$

preserves the positive cone by matrix monotonicity, that is,

$$
H \geq 0 \Rightarrow D f(X)[H] \geq 0
$$

Local argument II

Furthermore, the map $\operatorname{Df}(X)$ is completely positive in each coordinate, where a linear map $L: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is completely positive if the extension of L to $M_{n k}$ via the formula

$$
L_{k}(A \otimes B)=L(A) \otimes B
$$

on elements of the form $A \otimes B$ for $A \in M_{n}(\mathbb{C}), B \in M_{k}(\mathbb{C})$ and extended by linearity otherwise.

Local argument III

Theorem (Choi, Kraus)
A completely positive linear map $L: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ can be written in the form

$$
L(H)=\sum_{i=1}^{n^{2}} V_{i}^{*} H V_{i}
$$

where $V_{i} \in M_{n}(\mathbb{C})$
So by the Choi-Kraus theorem,

$$
\operatorname{Df}(X)[H]=\sum_{k=1}^{d} \sum_{i=1}^{n^{2}} V_{i, k}^{*} H_{k} V_{i, k}
$$

for some matrices $V_{i, k}$.

Local argument III

Theorem (Choi, Kraus)
A completely positive linear map $L: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ can be written in the form

$$
L(H)=\sum_{i=1}^{n^{2}} V_{i}^{*} H V_{i}
$$

where $V_{i} \in M_{n}(\mathbb{C})$
So by the Choi-Kraus theorem,

$$
D f(X)[H]=\sum_{k=1}^{d} \sum_{i=1}^{n^{2}} V_{i, k}^{*} H_{k} V_{i, k}
$$

for some matrices $V_{i, k}$. Via an algebraic reduction, the $V_{i, k}$ can be chosen to be the values of free polynomials $v_{i, k}$ at X.

Local argument IV

So,

$$
D f(X)[H]=\sum_{k=1}^{d} \sum_{i=1}^{n^{2}} v_{i, k}(X)^{*} H_{k} v_{i, k}(X)
$$

for some free polynomials $v_{i, k}$.

Local argument IV

So,

$$
D f(X)[H]=\sum_{k=1}^{d} \sum_{i=1}^{n^{2}} v_{i, k}(X)^{*} H_{k} v_{i, k}(X)
$$

for some free polynomials $v_{i, k}$.
Note $v_{i, k}(X)=\stackrel{u_{l, k}^{*}}{\otimes} m_{X}=\sum_{l \in \mathcal{I}} \overline{d_{i, k, l}} X^{\prime}$, for some

$$
u_{i, k}=\left(d_{i, k, l}\right)_{l \in \mathcal{I}} \in I^{2}(\mathcal{I})
$$

Local argument IV

So,

$$
D f(X)[H]=\sum_{k=1}^{d} \sum_{i=1}^{n^{2}} v_{i, k}(X)^{*} H_{k} v_{i, k}(X)
$$

for some free polynomials $v_{i, k}$.
Note $v_{i, k}(X)=\stackrel{u_{i, k}^{*}}{\otimes} m_{X}=\sum_{l \in \mathcal{I}} \overline{d_{i, k, l}} X^{\prime}$, for some

$$
u_{i, k}=\left(d_{i, k, l}\right)_{l \in \mathcal{I}} \in I^{2}(\mathcal{I}) \text {. So, }
$$

Local argument V

So,

$$
D f(X)[H]=\sum_{k=1}^{d} m_{X}^{*} \begin{gathered}
\sum_{i=1}^{n^{2}} u_{i, k} u_{i, k}^{*} \\
H_{k}
\end{gathered} m_{X}
$$

Local argument V

So,

$$
\operatorname{Df}(X)[H]=\sum_{k=1}^{d} m_{X}^{*} \begin{gathered}
\sum_{i=1}^{n^{2}} u_{i, k} u_{i, k}^{*} \\
H_{k}
\end{gathered} m_{X}
$$

Note, that $P_{X} C^{k} P_{X}=P_{X} \sum_{i=1}^{n^{2}} u_{i, k} u_{i, k}^{*} P_{X} \geq 0$ since

$$
D f(X)[H]=\sum_{k=1}^{d} m_{X}^{*}{ }_{H_{k}}^{C^{k}} m_{X}
$$

and so we are done.

Local argument V

So,

$$
\operatorname{Df}(X)[H]=\sum_{k=1}^{d} m_{X}^{*} \begin{gathered}
\sum_{i=1}^{n^{2}} u_{i, k} u_{i, k}^{*} \\
H_{k}
\end{gathered} m_{X}
$$

Note, that $P_{X} C^{k} P_{X}=P_{X} \sum_{i=1}^{n^{2}} u_{i, k} u_{i, k}^{*} P_{X} \geq 0$ since

$$
D f(X)[H]=\sum_{k=1}^{d} m_{X}^{*}{ }_{H_{k}}^{C^{k}} m_{X}
$$

and so we are done.

Coefficient condition

To revisit the coefficient condition, we can relax the original theorem.

Theorem (P., Tully-Doyle)
Let

$$
f(X)=\sum_{l \in \mathcal{I}} c_{l} X^{\prime}
$$

be a free power series in d variables which converges absolutely for all X such that $\|X\|<\epsilon$. The function f is matrix monotone on the domain of convergence if and only if each x_{k}-localizing matrix

$$
C^{k}=\left(c_{I^{*} x_{k} J}\right)_{I, J \in \mathcal{I}}
$$

is positive semidefinite in the sense that for each finite subset $\mathcal{J} \subset \mathcal{I}$

$$
C_{\mathcal{J}}^{k}=\left(c_{I^{*} x_{k} J}\right)_{I, J \in \mathcal{J}} \geq 0
$$

Example

Can we determine whether the function

$$
f\left(X_{1}, X_{2}\right)=\sqrt{X_{1} X_{2}+X_{2} X_{1}}
$$

Example

Can we determine whether the function

$$
f\left(X_{1}, X_{2}\right)=\sqrt{X_{1} X_{2}+X_{2} X_{1}}
$$

is matrix monotone in the sense that

$$
X_{1} \leq Y_{1}, X_{2} \leq Y_{2} \Rightarrow f\left(X_{1}, X_{2}\right) \leq f\left(Y_{1}, Y_{2}\right) ?
$$

Example

Can we determine whether the function

$$
f\left(X_{1}, X_{2}\right)=\sqrt{X_{1} X_{2}+X_{2} X_{1}}
$$

is matrix monotone in the sense that

$$
X_{1} \leq Y_{1}, X_{2} \leq Y_{2} \Rightarrow f\left(X_{1}, X_{2}\right) \leq f\left(Y_{1}, Y_{2}\right) ?
$$

We computed the following submatrix of the x_{1} localizing matrix

$$
\left(\begin{array}{cc}
c_{x_{1}} & c_{x_{1} x_{2}} \\
c_{X_{2} x_{1}} & c_{X_{2} x_{1} x_{2}}
\end{array}\right)
$$

Example

Can we determine whether the function

$$
f\left(X_{1}, X_{2}\right)=\sqrt{X_{1} X_{2}+X_{2} X_{1}}
$$

is matrix monotone in the sense that

$$
X_{1} \leq Y_{1}, X_{2} \leq Y_{2} \Rightarrow f\left(X_{1}, X_{2}\right) \leq f\left(Y_{1}, Y_{2}\right) ?
$$

We computed the following submatrix of the x_{1} localizing matrix

$$
\left(\begin{array}{cc}
c_{x_{1}} & c_{x_{1} x_{2}} \\
c_{x_{2} x_{1}} & c_{x_{2} x_{1} x_{2}}
\end{array}\right)
$$

.By expanding using the relation

$$
\sqrt{1+\alpha}=1+\frac{1}{2} \alpha-\frac{1}{8} \alpha^{2}+\frac{1}{16} \alpha^{3}+\ldots
$$

to expand $f\left(X_{1}, X_{2}\right)$ at the point $(1,1)$.

Example

Can we determine whether the function

$$
f\left(X_{1}, X_{2}\right)=\sqrt{X_{1} X_{2}+X_{2} X_{1}}
$$

is matrix monotone in the sense that

$$
X_{1} \leq Y_{1}, X_{2} \leq Y_{2} \Rightarrow f\left(X_{1}, X_{2}\right) \leq f\left(Y_{1}, Y_{2}\right) ?
$$

We computed the following submatrix of the x_{1} localizing matrix

$$
\left(\begin{array}{cc}
c_{x_{1}} & c_{x_{1} x_{2}} \\
c_{x_{2} x_{1}} & c_{x_{2} x_{1} x_{2}}
\end{array}\right)
$$

.By expanding using the relation

$$
\sqrt{1+\alpha}=1+\frac{1}{2} \alpha-\frac{1}{8} \alpha^{2}+\frac{1}{16} \alpha^{3}+\ldots
$$

to expand $f\left(X_{1}, X_{2}\right)$ at the point $(1,1)$.We got

Example

Can we determine whether the function

$$
f\left(X_{1}, X_{2}\right)=\sqrt{X_{1} X_{2}+X_{2} X_{1}}
$$

is matrix monotone in the sense that

$$
X_{1} \leq Y_{1}, X_{2} \leq Y_{2} \Rightarrow f\left(X_{1}, X_{2}\right) \leq f\left(Y_{1}, Y_{2}\right) ?
$$

We computed the following submatrix of the x_{1} localizing matrix

$$
\left(\begin{array}{cc}
c_{x_{1}} & c_{x_{1} x_{2}} \\
c_{x_{2} x_{1}} & c_{x_{2} x_{1} x_{2}}
\end{array}\right)
$$

.By expanding using the relation

$$
\sqrt{1+\alpha}=1+\frac{1}{2} \alpha-\frac{1}{8} \alpha^{2}+\frac{1}{16} \alpha^{3}+\ldots
$$

to expand $f\left(X_{1}, X_{2}\right)$ at the point $(1,1)$.We got

$$
\left(\begin{array}{cc}
\frac{1}{2} & \frac{3}{8} \\
\frac{3}{8} & -\frac{1}{16}
\end{array}\right)
$$

which is not positive semidefinite. So, f is not matrix monotone.

Matrix monotonicity in several noncommuting variables

J. E. Pascoe
University of California, San Diego
jpascoe@math.ucsd.edu

October 20, 2013

