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The functional calculus

Let f : (a, b)→ R.

Given a self-adjoint matrix A with spectrum in (a, b) diagonalized
by a unitary matrix U, that is,

A = U∗

λ1 0 . . .
0 λ2 . . .
...

...
. . .

U

we define the expression f (A) via the following formula.

f (A) = U∗

f (λ1) 0 . . .
0 f (λ2) . . .
...

...
. . .
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Matrix monotone functions
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We say f is matrix monotone if, for any natural number n ∈ N,
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Matrix monotone 6= classically monotone

Let f (x) = x3. The function f is monotone increasing on all of R.

Note,
( 1 1
1 1 ) ≤ ( 2 1

1 1 )

since
( 2 1
1 1 )− ( 1 1

1 1 ) = ( 1 0
0 0 )

is positive semidefinite.
However,

f ( 1 1
1 1 ) = ( 4 4

4 4 ) , f ( 2 1
1 1 ) = ( 13 8

8 5 )

but ( 13 8
8 5 )− ( 4 4

4 4 ) = ( 9 4
4 1 ) is not positive semidefinite since the

determinant is negative. Thus, x3 is not matrix monotone on all of
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Matrix monotone functions exist

Let f (x) = −x−1.

We will show f is matrix monotone on (0,∞).
Let X ≤ Y with spectrum in the positive reals.
Let H = Y − X . Consider the function f (X + tH). By the
fundamental theorem of calculus

f (Y )− f (X ) =

∫ 1

0

d

dt
f (X + tH)dt

So, it is enough to show that d
dt f (X + tH) is postive semidefininte.
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Matrix monotone functions exist

d

dt
f (X + tH) = lim

t→0

f (X + tH)− f (X )

t
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t
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(X + tH)−1(X + tH − X )X−1

t
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t→0

(X + tH)−1(tH)X−1

t

= X−1HX−1.

Since, H = Y − X ≥ 0, the derivative

d

dt
f (X + tH) = X−1HX−1 = (H1/2X−1)∗H1/2X−1 ≥ 0.

So, x−1 is matrix monotone.
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Löwner’s theorem

Let H denote the upper half plane in C.

Theorem (Löwner 1934)

Let f : (a, b)→ R be a bounded Borel function. The function f is
matrix monotone if and only if f analytically continues to H as
function F : H ∪ (a, b)→ H which is continuous on H ∪ (a, b).

For example x1/3, log x and − 1
x are matrix monotone on (1, 2) but

x3 and ex are not.
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Löwner’s theorem in several commuting variables

Let H denote the upper half plane in C.

Theorem (Agler, McCarthy, Young 2013)

Let f : (a, b)d → R be a rational function. The function f is
matrix monotone when lifted to commuting tuples of matrices via
the functional calculus then f analytically continues to Hd as
function F : Hd ∪ (a, b)d → H which is continuous on Hd ∪ (a, b)d .

The continuation of a matrix monotone rational function is in the
conformal analogue of the Schur-Agler class for the upper
half-plane, the Löwner class.
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Löwner’s theorem

What is Löwner’s theorem for functions of several noncommuting
variables?

Can we determine whether some expression with matrix inputs

f (X1,X2) =
√

X1X2 + X2X1

is matrix monotone in the sense that

X1 ≤ Y1,X2 ≤ Y2 ⇒ f (X1,X2) ≤ f (Y1,Y2)?

We will now establish a framework for understanding power series
several noncommuting variables.
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denote the empty word.

For example x1x2 is a word in the letters x1 and x2.
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Note x1x2 6= x2x1.

Words carry an involution ∗ which reverses their letters.

For example (x1x2)∗ = x2x1.
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Free monomials

Let X = (X1, . . . ,Xd) be a tuple of n by n matrices.
Let w be a word in the letters x1, . . . , xd .

The words correspond to multi-indices in the noncommuting case.
For example, X x1x2 + 7X x1x2x2x1x1 = X1X2 + 7X1X2X2X1X1.
We formally define Xw recursively via the relations

X xiw = XiX
w ,

X e = I .
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Free derivatives

The expression

f (X ) =
∑
I∈I

cIX
I

denotes formal free power series in d variables with coefficients
cI ∈ C.

The free formal derivative of f at X = (X1, . . . ,Xd) in the
direction H = (H1, . . . ,Hd) denoted Df (X )[H] can be taken via
the following relations where xi (X ) = Xi .

On coordinate functions Dxi (X )[H] = Hi ,

Product Rule D[fg ](X )[H] = (Df (X )[H])g + f (Dg(X )[H]), and

Linearity D[f + g ](X )[H] = D[f ](X )[H] + D[g ](X )[H].

Thus, the derivative of f (X1,X2) = X1X2 is

Df (X )[H] = H1X2 + X1H2.
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Example of free derivative

Let f (X1,X2) = 6X1X2 + 7X 2
1 − 8X2.

The free derivative of f (X1,X2) is given by the formula

Df (X1,X2)[H1,H2] = 6H1X2 + 6X1H2 + 7H1X1 + 7X1H1 − 8H2.

For self-adjoint X1,X2 we will rewrite derivatives in the form:

Df (X1,X2)[H1,H2] = 1
X1

X2

∗ 0 7H1 6H1

7H1 0 0
0 0 0

 1
X1

X2

+

 1
X1

X2

∗−8H2 0 0
6H2 0 0

0 0 0

 1
X1

X2
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Example in one variable

Let f (x) =
∑∞

i=0 aix
i .

Taking the ordinary derivative f ′(x) =
∑∞

i=1 iaix
i−1 which for real

x is given by the formula:

f ′(x) =


1
x
x2

...


∗

a1 a2 a3 . . .
a2 a3 a4 . . .
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Löwner’s theorem in several variables at 0

For X = (X1, . . .Xd), let ‖X‖ = maxi ‖Xi‖.

Theorem (P., Tully-Doyle)

Let
f (X ) =

∑
I∈I

cIX
I

be a free power series in d variables which converges absolutely for
all X such that ‖X‖ < d + ε. The function f is matrix monotone
on the domain of convergence, that is,

∀1≤i≤dXi ≤ Yi ⇒ f (X ) ≤ f (Y ),

if and only if for each n, f analytically continues as a function on
d-tuples of n by n matrices over C with positive imaginary part
(where Im W = (W −W ∗)/2i ) so that

∀1≤i≤dIm Zi > 0⇒ Im f (Z ) > 0.
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Coefficient condtion at 0

The Löwner theorem is proven using the following result.

Theorem (P., Tully-Doyle)

Let
f (X ) =

∑
I∈I

cIX
I

be a free power series in d variables which converges absolutely for
all X such that ‖X‖ < d + ε. The function f is matrix monotone
on the domain of convergence if and only if each xk -localizing
matrix

C k = (cI∗xkJ)I ,J∈I

is positive semidefinite.



Models and the localizing matrices

In fact,

Df (X )[H] =
d∑

k=1

(X I )∗I∈I(cI∗xkJHk)I ,J∈I(X J)J∈I .

Let mX = (X I )I∈I . If each C k = (cI∗xkJ)I ,J∈I ≥ 0, the form of the
expression

Df (X )[H] =
d∑

k=1

m∗X

C k

⊗
Hk

mX

implies that if each Hk ≥ 0 then Df (X )[H] ≥ 0.
Expressions for the second derivative similar to the above have
been used by Helton and McCullough to understand free convexity
and positive polynomials.
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Models continued

Finally, via some relations in free analysis and by taking the square
root of each C k we obtain

f (X )− f (Y ) =
d∑

k=1

m∗Y

(C k)1/2

⊗
I

I
⊗

Xk − Yk

(C k)1/2

⊗
I

mX ,

which can be used to derive the analytic continuation of f via a
lurking isometry argument.



Localizing matrix positivity

Let
f (X ) =

∑
I∈I

cIX
I

be a free power series in d variables which converges absolutely
and is matrix monotone for all X such that ‖X‖ < d + ε.

To show C k = (cI∗xkJ)I ,J∈I ≥ 0, we show that for any X with
‖X‖ < 1

d ,

PXC kPX ≥ 0

where PX is the projection onto the vector space

VX = {d ∈ l2(I)|0 =
∑

dIX
I}⊥.

The VX are finite dimensional and their union over ‖X‖ < 1
d is

dense in l2(I).
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The space VX

Let
VX = {d ∈ l2(I)|0 =

∑
dIX

I}⊥.

The space VX can also be defined as

VX = spanij(X I
ij)I∈I .

In one variable,

VX = spanλ∈σ(X )(λ
n)n∈Z≥0 .

Furthermore, by the rank nullity theorem

dim VX = dim spanI∈I X I .

In this way, the dimension of the space VX corresponds to the
dimension of power series evaluated at X .
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Localizing matrix positivity II

Let mX = (X I )I∈I . Fix X with ‖X‖ < 1
d .

Let A,B ∈ B(l2(I)).

If for every H, m∗X

A
⊗
H

mX = m∗X

B
⊗
H

mX ,

then PX (A− B)PX = 0 where PX is the projection onto the vector
space

VX = {d ∈ l2(I)|0 =
∑

dIX
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Localizing matrix positivity III

Thus, given a power series

f (X ) =
∑
I∈I

cIX
I

which converges absolutely and is matrix monotone for all X such
that ‖X‖ < d + ε to show

C k = (cI∗xkJ)I ,J∈I ≥ 0

we merely need to find a specific C k
X such that

PXC k
XPX = PXC kPX .

This is a finite dimensional problem since PX is a projection onto a
finite dimensional vector space.
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Local argument

Let
f (X ) =

∑
I∈I

cIX
I

which is matrix monotone for all X with ‖X‖ < d + ε. Let
mX = (X I )I∈I . Fix X with ‖X‖ < 1

d .

The derivative at X

Df (X ) : Mn(C)d → Mn(C)

preserves the positive cone by matrix monotonicity, that is,

H ≥ 0⇒ Df (X )[H] ≥ 0.
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Local argument II

Furthermore, the map Df (X ) is completely positive in each
coordinate, where a linear map L : Mn(C)→ Mn(C) is completely
positive if the extension of L to Mnk via the formula

Lk(A⊗ B) = L(A)⊗ B

on elements of the form A⊗ B for A ∈ Mn(C),B ∈ Mk(C) and
extended by linearity otherwise.



Local argument III

Theorem (Choi, Kraus)

A completely positive linear map L : Mn(C)→ Mn(C) can be
written in the form

L(H) =
n2∑
i=1

V ∗i HVi

where Vi ∈ Mn(C)

So by the Choi-Kraus theorem,

Df (X )[H] =
d∑

k=1

n2∑
i=1

V ∗i ,kHkVi ,k

for some matrices Vi ,k .

Via an algebraic reduction, the Vi ,k can be
chosen to be the values of free polynomials vi ,k at X .
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Coefficient condition

To revisit the coefficient condition, we can relax the original
theorem.

Theorem (P., Tully-Doyle)

Let
f (X ) =

∑
I∈I

cIX
I

be a free power series in d variables which converges absolutely for
all X such that ‖X‖ < ε. The function f is matrix monotone on
the domain of convergence if and only if each xk -localizing matrix

C k = (cI∗xkJ)I ,J∈I

is positive semidefinite in the sense that for each finite subset
J ⊂ I

C k
J = (cI∗xkJ)I ,J∈J ≥ 0.



Example
Can we determine whether the function

f (X1,X2) =
√

X1X2 + X2X1

is matrix monotone in the sense that

X1 ≤ Y1,X2 ≤ Y2 ⇒ f (X1,X2) ≤ f (Y1,Y2)?

We computed the following submatrix of the x1 localizing matrix(
cx1 cx1x2

cx2x1 cx2x1x2

)
.By expanding using the relation

√
1 + α = 1 +

1

2
α− 1

8
α2 +

1

16
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