Regular and Positive noncommutative rational functions

J. E. Pascoe
WashU
pascoej@math.wustl.edu

$$
\text { June 4, } 2016
$$

Joint work with Igor Klep and Jurij Volčič

Positive numbers: the start of real algebraic geometry

We start with the following observation:

Positive numbers: the start of real algebraic geometry

We start with the following observation:

- Let $t \in \mathbb{R}$. The number $t \geq 0$ if and only if there exists a number $s \in \mathbb{R}$ such that $s^{2}=t$.

Positive numbers: the start of real algebraic geometry

We start with the following observation:

- Let $t \in \mathbb{R}$. The number $t \geq 0$ if and only if there exists a number $s \in \mathbb{R}$ such that $s^{2}=t$.
Via developments in logic in the early 20th century, Tarski noted that the above observation implies the systematic study of real inequalities could be made algebraic.

Positive polynomials in one variable

Theorem (Fejér-Riesz Theorem)
Let $p(x)$ be a real polynomial in one variable.

Positive polynomials in one variable

Theorem (Fejér-Riesz Theorem)
Let $p(x)$ be a real polynomial in one variable.
The polynomial satisfies

$$
p(x) \geq 0 \text { for all } x \in \mathbb{R}
$$

Positive polynomials in one variable

Theorem (Fejér-Riesz Theorem)
Let $p(x)$ be a real polynomial in one variable.
The polynomial satisfies

$$
p(x) \geq 0 \text { for all } x \in \mathbb{R}
$$

if and only if

Positive polynomials in one variable

Theorem (Fejér-Riesz Theorem)
Let $p(x)$ be a real polynomial in one variable.
The polynomial satisfies

$$
p(x) \geq 0 \text { for all } x \in \mathbb{R}
$$

if and only if
there exist real polynomials $q_{1}(x)$ and $q_{2}(x)$ such that

$$
p(x)=q_{1}(x)^{2}+q_{2}(x)^{2} .
$$

Positive polynomials in one variable

Theorem (Fejér-Riesz Theorem)
Let $p(x)$ be a real polynomial in one variable.
The polynomial satisfies

$$
p(x) \geq 0 \text { for all } x \in \mathbb{R}
$$

if and only if
there exist real polynomials $q_{1}(x)$ and $q_{2}(x)$ such that

$$
p(x)=q_{1}(x)^{2}+q_{2}(x)^{2} .
$$

We note that the above theorem is usually stated for trigonometric polynomials and was very important in the classical study of orthogonal polynomials.

Proof of the Fejèr-Riesz Theorem

Suppose $p(x) \geq 0$ for all $x \in \mathbb{R}$.

Proof of the Fejèr-Riesz Theorem

Suppose $p(x) \geq 0$ for all $x \in \mathbb{R}$. We make some observations:

Proof of the Fejèr-Riesz Theorem

Suppose $p(x) \geq 0$ for all $x \in \mathbb{R}$. We make some observations:

- The degree of $p(x)$ must be even, since, for a polynomial of odd degree, the asymptotics are of opposite sign as we go to plus and minus infinity.

Proof of the Fejèr-Riesz Theorem

Suppose $p(x) \geq 0$ for all $x \in \mathbb{R}$. We make some observations:

- The degree of $p(x)$ must be even, since, for a polynomial of odd degree, the asymptotics are of opposite sign as we go to plus and minus infinity.
- Any real roots of $p(x)$ must be of even order.

Proof of the Fejèr-Riesz Theorem

Suppose $p(x) \geq 0$ for all $x \in \mathbb{R}$. We make some observations:

- The degree of $p(x)$ must be even, since, for a polynomial of odd degree, the asymptotics are of opposite sign as we go to plus and minus infinity.
- Any real roots of $p(x)$ must be of even order.

So, by the fundamental theorem of algebra, we know that $p(x)=\prod_{i}\left(x-\lambda_{i}\right)\left(x-\overline{\lambda_{i}}\right)=\prod_{i}\left|\left(x-\lambda_{i}\right)\right|^{2}$ for some $\lambda_{i} \in \mathbb{C}$.

Proof of the Fejèr-Riesz Theorem

Suppose $p(x) \geq 0$ for all $x \in \mathbb{R}$. We make some observations:

- The degree of $p(x)$ must be even, since, for a polynomial of odd degree, the asymptotics are of opposite sign as we go to plus and minus infinity.
- Any real roots of $p(x)$ must be of even order.

So, by the fundamental theorem of algebra, we know that $p(x)=\prod_{i}\left(x-\lambda_{i}\right)\left(x-\overline{\lambda_{i}}\right)=\prod_{i}\left|\left(x-\lambda_{i}\right)\right|^{2}$ for some $\lambda_{i} \in \mathbb{C}$. Therefore, there is a polynomial q over \mathbb{C} such that $p(x)=|q(x)|^{2}$, namely $q(x)=\prod_{i}\left(x-\lambda_{i}\right)$.

Proof of the Fejèr-Riesz Theorem

Suppose $p(x) \geq 0$ for all $x \in \mathbb{R}$. We make some observations:

- The degree of $p(x)$ must be even, since, for a polynomial of odd degree, the asymptotics are of opposite sign as we go to plus and minus infinity.
- Any real roots of $p(x)$ must be of even order.

So, by the fundamental theorem of algebra, we know that $p(x)=\prod_{i}\left(x-\lambda_{i}\right)\left(x-\overline{\lambda_{i}}\right)=\prod_{i}\left|\left(x-\lambda_{i}\right)\right|^{2}$ for some $\lambda_{i} \in \mathbb{C}$. Therefore, there is a polynomial q over \mathbb{C} such that $p(x)=|q(x)|^{2}$, namely $q(x)=\prod_{i}\left(x-\lambda_{i}\right)$. Taking the real and imaginary parts of q to be q_{1} and q_{2}, we see that $p(x)=q_{1}(x)^{2}+q_{2}(x)^{2}$.

Positive polynomials in several variables

Given $p\left(x_{1}, \ldots, x_{d}\right)$ a polynomial in d variables.

Positive polynomials in several variables

Given $p\left(x_{1}, \ldots, x_{d}\right)$ a polynomial in d variables.
If p is nonnegative for all real inputs, is it the case that p is of the form

$$
p=\sum_{\text {finite }} q_{i}^{2}
$$

for some polynomials q_{i} ?

Positive polynomials in several variables

Given $p\left(x_{1}, \ldots, x_{d}\right)$ a polynomial in d variables.
If p is nonnegative for all real inputs, is it the case that p is of the form

$$
p=\sum_{\text {finite }} q_{i}^{2}
$$

for some polynomials q_{i} ?
No. (Hilbert, although explicit examples were found much later.)

Motzkin polynomial

Theorem (Motzkin 1967)
The polynomial

$$
p(x, y)=x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1
$$

is nonnegative, but is not a sum of squares of polynomials.

Motzkin polynomial

Theorem (Motzkin 1967)
The polynomial

$$
p(x, y)=x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1
$$

is nonnegative, but is not a sum of squares of polynomials.
A modern proof of this fact can be obtained numerically via semidefinite programming.

Motzkin polynomial

Theorem (Motzkin 1967)
The polynomial

$$
p(x, y)=x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1
$$

is nonnegative, but is not a sum of squares of polynomials.
A modern proof of this fact can be obtained numerically via semidefinite programming. The classical proof used some kind of algebraic bean count.

Motzkin polynomial as a rational function

The Motzkin polynomial can be rewritten

$$
\begin{array}{r}
p(x, y)=x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1 \\
=\left[\frac{x y\left(x^{2}+y^{2}-2\right)}{x^{2}+y^{2}}\right]^{2}+\left[\frac{x y^{2}\left(x^{2}+y^{2}-2\right)}{x^{2}+y^{2}}\right]^{2}+ \\
{\left[\frac{x^{2} y\left(x^{2}+y^{2}-2\right)^{2}}{x^{2}+y^{2}}\right]^{2}+\left[\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right]^{2}}
\end{array}
$$

which gives us the sum of squares of rational functions representation. (Schmüdgen)

Motzkin polynomial as a rational function

The Motzkin polynomial can be rewritten

$$
\begin{array}{r}
p(x, y)=x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1 \\
=\left[\frac{x y\left(x^{2}+y^{2}-2\right)}{x^{2}+y^{2}}\right]^{2}+\left[\frac{x y^{2}\left(x^{2}+y^{2}-2\right)}{x^{2}+y^{2}}\right]^{2}+ \\
{\left[\frac{x^{2} y\left(x^{2}+y^{2}-2\right)^{2}}{x^{2}+y^{2}}\right]^{2}+\left[\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right]^{2}}
\end{array}
$$

which gives us the sum of squares of rational functions representation. (Schmüdgen)

Hilbert's 17th problem

Hilbert (1893) deduced in two variables that every positive polynomial was the sum of four rational functions.

Hilbert's 17th problem

Hilbert (1893) deduced in two variables that every positive polynomial was the sum of four rational functions.

Hilbert's seventeenth problem asks whether any positive polynomial in several variables can be written as a sum of squares of rational functions.

The Artin theorem

Theorem (Artin)
Let p be a real polynomial in several variables.

The Artin theorem

Theorem (Artin)
Let p be a real polynomial in several variables.
The polynomial p is nonnegative for all real inputs

The Artin theorem

Theorem (Artin)
Let p be a real polynomial in several variables.
The polynomial p is nonnegative for all real inputs
if and only if

The Artin theorem

Theorem (Artin)
Let p be a real polynomial in several variables.
The polynomial p is nonnegative for all real inputs
if and only if
there exist real rational functions q_{i} such that

$$
p(x)=\sum_{\text {finite }} q_{i}(x)^{2}
$$

The Artin theorem

Theorem (Artin)
Let p be a real polynomial in several variables.
The polynomial p is nonnegative for all real inputs
if and only if
there exist real rational functions q_{i} such that

$$
p(x)=\sum_{\text {finite }} q_{i}(x)^{2}
$$

In fact, q_{i} can be chosen such that they are well defined for all real inputs.

The Artin theorem

Theorem (Artin)
Let p be a real polynomial in several variables.
The polynomial p is nonnegative for all real inputs
if and only if
there exist real rational functions q_{i} such that

$$
p(x)=\sum_{\text {finite }} q_{i}(x)^{2} .
$$

In fact, q_{i} can be chosen such that they are well defined for all real inputs. That is, their denominators can be chosen so that they never vanish on real inputs. (Rational functions with such nonvanishing denominators are sometimes called regular.) The proof goes by a clever application of the Tarski principle.

The Artin theorem over rational functions

By clearing denominators, one obtains the following result for rational functions.
Theorem (Artin)
Let r be a real rational function in several variables.

The Artin theorem over rational functions

By clearing denominators, one obtains the following result for rational functions.

Theorem (Artin)
Let r be a real rational function in several variables. The rational function r is nonnegative for all real inputs

The Artin theorem over rational functions

By clearing denominators, one obtains the following result for rational functions.
Theorem (Artin)
Let r be a real rational function in several variables. The rational function r is nonnegative for all real inputs
if and only if

The Artin theorem over rational functions

By clearing denominators, one obtains the following result for rational functions.
Theorem (Artin)
Let r be a real rational function in several variables. The rational function r is nonnegative for all real inputs
if and only if
there exist real rational functions q_{i} such that

$$
r(x)=\sum_{\text {finite }} q_{i}(x)^{2}
$$

We will now shift our focus away from history to the noncommutative setting.

We will now shift our focus away from history to the noncommutative setting.
The techniques involved will also shift from logic-algebra to functional analysis.

Free polynomials

A free polynomial is an expression involving + , the letters x_{1}, \ldots, x_{d} and scalar numbers.

Free polynomials

A free polynomial is an expression involving + , the letters x_{1}, \ldots, x_{d} and scalar numbers.
For example,

$$
p\left(x_{1}, x_{2}\right)=7 x_{1} x_{2}^{2} x_{1}+-8000 x_{1} x_{2}
$$

is a free polynomial.

Free polynomials

A free polynomial is an expression involving + , the letters x_{1}, \ldots, x_{d} and scalar numbers.
For example,

$$
p\left(x_{1}, x_{2}\right)=7 x_{1} x_{2}^{2} x_{1}+-8000 x_{1} x_{2}
$$

is a free polynomial.
So is, For example,

$$
p\left(x_{1}, x_{2}\right)=2 x_{2}^{2} x_{1}^{2} x_{2}+x_{1}^{2}+x_{1} x_{2}
$$

is a free polynomial.

Free polynomials

A free polynomial is an expression involving + , the letters x_{1}, \ldots, x_{d} and scalar numbers.
For example,

$$
p\left(x_{1}, x_{2}\right)=7 x_{1} x_{2}^{2} x_{1}+-8000 x_{1} x_{2}
$$

is a free polynomial.
So is, For example,

$$
p\left(x_{1}, x_{2}\right)=2 x_{2}^{2} x_{1}^{2} x_{2}+x_{1}^{2}+x_{1} x_{2}
$$

is a free polynomial.
Note that in the above example x_{1} and x_{2} do not commute.

Free polynomials

A free polynomial is an expression involving + , the letters x_{1}, \ldots, x_{d} and scalar numbers.
For example,

$$
p\left(x_{1}, x_{2}\right)=7 x_{1} x_{2}^{2} x_{1}+-8000 x_{1} x_{2}
$$

is a free polynomial.
So is, For example,

$$
p\left(x_{1}, x_{2}\right)=2 x_{2}^{2} x_{1}^{2} x_{2}+x_{1}^{2}+x_{1} x_{2}
$$

is a free polynomial.
Note that in the above example x_{1} and x_{2} do not commute. (That is, $x_{1} x_{2} \neq x_{2} x_{1}$)

Positive free polynomials

We say a free polynomial is nonnegative if it is positive semidefinite for all self-adjoint operator inputs.

Positive free polynomials

We say a free polynomial is nonnegative if it is positive semidefinite for all self-adjoint operator inputs.
For example, the free polynomial

$$
p\left(x_{1}, x_{2}\right)=x_{1} x_{2}^{2} x_{1}
$$

is positive, since it can be written as

$$
p\left(x_{1}, x_{2}\right)=x_{1} x_{2}\left(x_{1} x_{2}\right)^{*}
$$

Helton's theorem

Theorem (Helton 2002)
Let p be a free polynomial.

Helton's theorem

Theorem (Helton 2002)
Let p be a free polynomial. The free polynomial p is nonnegative

Helton's theorem

Theorem (Helton 2002)
Let p be a free polynomial. The free polynomial p is nonnegative if and only if

Helton's theorem

Theorem (Helton 2002)
Let p be a free polynomial. The free polynomial p is nonnegative if and only if there exist free polynomials q_{i} such that

$$
p=\sum q_{i} q_{i}^{*}
$$

Helton's theorem

Theorem (Helton 2002)
Let p be a free polynomial. The free polynomial p is nonnegative if and only if there exist free polynomials q_{i} such that

$$
p=\sum q_{i} q_{i}^{*}
$$

Note the difference from the commutative case: in the noncommutative case a free polynomial can be written as a sum of squares of free polynomials. (There is no mention of rational functions.)

Sketch of the proof of Helton's theorem

The proof of Helton's theorem goes by a cone-separation argument.

Sketch of the proof of Helton's theorem

The proof of Helton's theorem goes by a cone-separation argument. Let \mathcal{C} be the cone of sums of squares of free polynomials of degree less than or equal to the degree of p.

Sketch of the proof of Helton's theorem

The proof of Helton's theorem goes by a cone-separation argument. Let \mathcal{C} be the cone of sums of squares of free polynomials of degree less than or equal to the degree of p.By the Hahn-Banach theorem, if p is not a sum of squares we can find a linear functional L which is nonnegative on all of \mathcal{C} but satisfies $L(p)<0$.

Sketch of the proof of Helton's theorem

The proof of Helton's theorem goes by a cone-separation argument. Let \mathcal{C} be the cone of sums of squares of free polynomials of degree less than or equal to the degree of p.By the Hahn-Banach theorem, if p is not a sum of squares we can find a linear functional L which is nonnegative on all of \mathcal{C} but satisfies $L(p)<0$. By the GNS construction, we can find a tuple of self-adjoint operators (on a finite dimensional Hilbert space) $X=\left(X_{1}, \ldots, X_{d}\right)$ and a vector v such that

$$
L(q)=\langle q(X) v, v\rangle . \text { when } \operatorname{deg} q<2 \operatorname{deg} p
$$

Sketch of the proof of Helton's theorem

The proof of Helton's theorem goes by a cone-separation argument. Let \mathcal{C} be the cone of sums of squares of free polynomials of degree less than or equal to the degree of p.By the Hahn-Banach theorem, if p is not a sum of squares we can find a linear functional L which is nonnegative on all of \mathcal{C} but satisfies $L(p)<0$. By the GNS construction, we can find a tuple of self-adjoint operators (on a finite dimensional Hilbert space) $X=\left(X_{1}, \ldots, X_{d}\right)$ and a vector v such that

$$
L(q)=\langle q(X) v, v\rangle . \text { when } \operatorname{deg} q<2 \operatorname{deg} p
$$

Now

$$
L(p)=\langle p(X) v, v\rangle<0
$$

which witnesses a tuple of self-adjoint operators where the p is not positive semidefinite.

Free rational functions

- A free rational expression is an expression involving $+,(),,{ }^{-1}$ the letters x_{1}, \ldots, x_{d} and scalar numbers.

Free rational functions

- A free rational expression is an expression involving $+,(),,,^{-1}$ the letters x_{1}, \ldots, x_{d} and scalar numbers.
- A free rational function is an equivalence class of nondegenerate free rational expressions, where we regard two expressions as equal if they are equal for all operators where both are well defined. (Nondegeneracy means that the expression is defined for at least one input, that is, examples such as 0^{-1} are disallowed.)

Free rational functions

- A free rational expression is an expression involving $+,(),,{ }^{-1}$ the letters x_{1}, \ldots, x_{d} and scalar numbers.
- A free rational function is an equivalence class of nondegenerate free rational expressions, where we regard two expressions as equal if they are equal for all operators where both are well defined. (Nondegeneracy means that the expression is defined for at least one input, that is, examples such as 0^{-1} are disallowed.)

Examples of free rational functions include

$$
1, x_{1} x_{1}^{-1}, 1+x_{2}\left(8 x_{1}^{3}+8\right)^{-1}
$$

Free rational functions

- A free rational expression is an expression involving $+,(),,{ }^{-1}$ the letters x_{1}, \ldots, x_{d} and scalar numbers.
- A free rational function is an equivalence class of nondegenerate free rational expressions, where we regard two expressions as equal if they are equal for all operators where both are well defined. (Nondegeneracy means that the expression is defined for at least one input, that is, examples such as 0^{-1} are disallowed.)

Examples of free rational functions include

$$
1, x_{1} x_{1}^{-1}, 1+x_{2}\left(8 x_{1}^{3}+8\right)^{-1}
$$

We note that the first two are equal. (ie $1=x_{1} x_{1}^{-1}$)

Regular free rational functions

- We say a free rational function r is regular if it can be defined for all self-adjoint inputs. That is, for every self-adjoint input $X=\left(X_{1}, \ldots, X_{d}\right)$, there is an expression for r which is defined at X.

Regular free rational functions

- We say a free rational function r is regular if it can be defined for all self-adjoint inputs. That is, for every self-adjoint input $X=\left(X_{1}, \ldots, X_{d}\right)$, there is an expression for r which is defined at X.

Note that all free polynomials are regular free rational functions.

Regular free rational functions

- We say a free rational function r is regular if it can be defined for all self-adjoint inputs. That is, for every self-adjoint input $X=\left(X_{1}, \ldots, X_{d}\right)$, there is an expression for r which is defined at X.

Note that all free polynomials are regular free rational functions. There are many others, such as $\left(1+x_{1} x_{2}-x_{2} x_{1}\right)^{-1}$.

Regular free rational functions

- We say a free rational function r is regular if it can be defined for all self-adjoint inputs. That is, for every self-adjoint input $X=\left(X_{1}, \ldots, X_{d}\right)$, there is an expression for r which is defined at X.

Note that all free polynomials are regular free rational functions. There are many others, such as $\left(1+x_{1} x_{2}-x_{2} x_{1}\right)^{-1}$.
Lemma (Klep, P., Volčič)
Any regular free rational function r has an expression which is defined everywhere.

Regular free rational functions

- We say a free rational function r is regular if it can be defined for all self-adjoint inputs. That is, for every self-adjoint input $X=\left(X_{1}, \ldots, X_{d}\right)$, there is an expression for r which is defined at X.

Note that all free polynomials are regular free rational functions. There are many others, such as $\left(1+x_{1} x_{2}-x_{2} x_{1}\right)^{-1}$.
Lemma (Klep, P., Volčič)
Any regular free rational function r has an expression which is defined everywhere.
Follows from minimal realization theory.

The noncommutative Artin theorem

Theorem (Klep, P., Volčič)
Let r be a regular free rational function.

The noncommutative Artin theorem

Theorem (Klep, P., Volčič)
Let r be a regular free rational function. The free rational function r is nonnegative

The noncommutative Artin theorem

Theorem (Klep, P., Volčič)
Let r be a regular free rational function. The free rational function r is nonnegative
if and only if

The noncommutative Artin theorem

Theorem (Klep, P., Volčič)
Let r be a regular free rational function. The free rational function r is nonnegative
if and only if
there exist regular free rational functions q_{i} such that

$$
r=\sum q_{i} q_{i}^{*}
$$

The noncommutative Artin theorem

Theorem (Klep, P., Volčič)
Let r be a regular free rational function. The free rational function r is nonnegative
if and only if
there exist regular free rational functions q_{i} such that

$$
r=\sum q_{i} q_{i}^{*}
$$

Here the situation is not as simple as clearing denominators as in the commutative case.

The noncommutative Artin theorem

Theorem (Klep, P., Volčič)

Let r be a regular free rational function. The free rational function r is nonnegative
if and only if
there exist regular free rational functions q_{i} such that

$$
r=\sum q_{i} q_{i}^{*}
$$

Here the situation is not as simple as clearing denominators as in the commutative case. Additionally, we note that q_{i} can be taken to be in the subring of noncommutative rational functions generated by subexpressions of a regular formula for r.

The proof

The proof is similar to Helton's 2002 result but requires finding the right cone.

The proof

The proof is similar to Helton's 2002 result but requires finding the right cone.First we found a space \mathcal{S} of expressions which played the role of polynomials of degree less than or equal to the degree p in Helton, then we executed the cone-separation argument of the sums of squares of elements of \mathcal{S}.

The proof

The proof is similar to Helton's 2002 result but requires finding the right cone.First we found a space \mathcal{S} of expressions which played the role of polynomials of degree less than or equal to the degree p in Helton, then we executed the cone-separation argument of the sums of squares of elements of \mathcal{S}. For the GNS construction to work, we needed various properties of \mathcal{S} such as:

- $p+q \in \mathcal{S} \Rightarrow p, q \in \mathcal{S}$
- $p q \in \mathcal{S} \Rightarrow q \in \mathcal{S}$
- $p^{-1} q \Rightarrow p p^{-1} q \in \mathcal{S}$

The proof

The proof is similar to Helton's 2002 result but requires finding the right cone.First we found a space \mathcal{S} of expressions which played the role of polynomials of degree less than or equal to the degree p in Helton, then we executed the cone-separation argument of the sums of squares of elements of \mathcal{S}. For the GNS construction to work, we needed various properties of \mathcal{S} such as:

- $p+q \in \mathcal{S} \Rightarrow p, q \in \mathcal{S}$
- $p q \in \mathcal{S} \Rightarrow q \in \mathcal{S}$
- $p^{-1} q \Rightarrow p p^{-1} q \in \mathcal{S}$

Regularity allowed us to conclude that what the GNS produced would be in the domain of our rational function.

Regular functions and Realizations

We developed methods for identifying regular functions in terms of their minimal realizations.

Regular functions and Realizations

We developed methods for identifying regular functions in terms of their minimal realizations.
A realization is a formula of the form

$$
r(X)=c^{*}\left(A_{0}+\sum A_{i} X_{i}\right)^{-1} b
$$

(Here we have suppressed tensors.)

Stably bounded functions

- A regular rational function r is said to be stably bounded if there is an $\epsilon>0$ such that for all inputs with imaginary part having norm less than ϵ, the function r is bounded.

Stably bounded functions

- A regular rational function r is said to be stably bounded if there is an $\epsilon>0$ such that for all inputs with imaginary part having norm less than ϵ, the function r is bounded.
- We showed that r is stably bounded if and only if for its minimal realization there exists a D such that $D A_{0}$ has positive real part and each $D A_{i}$ is skew-self-adjoint for $i>0$. We called such realizations stably privileged.

Privileged realizations

Let $d \geq e$ and $L=A_{0}+\sum_{j} A_{j} x_{j}$ with $A_{j} \in M_{d, e}(\mathbb{R})$.

- We recursively define L to be privileged if

1. it is stably privileged; or
2. there exists $D \in M e, d(\mathbb{R})$ such that $0 \neq \operatorname{Re}\left(D A_{0}\right) \geq 0, \quad \operatorname{Re}\left(D A_{j}\right)=0 \quad$ for $j>0$ and $L V$ is privileged, where columns of V form a basis for $\operatorname{ker} \operatorname{Re}\left(D A_{0}\right)$.

Privileged realizations

Let $d \geq e$ and $L=A_{0}+\sum_{j} A_{j} x_{j}$ with $A_{j} \in M_{d, e}(\mathbb{R})$.

- We recursively define L to be privileged if

1. it is stably privileged; or
2. there exists $D \in M e, d(\mathbb{R})$ such that $0 \neq \operatorname{Re}\left(D A_{0}\right) \geq 0, \quad \operatorname{Re}\left(D A_{j}\right)=0 \quad$ for $j>0$ and $L V$ is privileged, where columns of V form a basis for $\operatorname{ker} \operatorname{Re}\left(D A_{0}\right)$.

Theorem (Klep, P., Volčič)
A rational function is regular if and only if it has a privileged realization.

Regular and Positive noncommutative rational functions

J. E. Pascoe
WashU
pascoej@math.wustl.edu

June 4, 2016

