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Positive numbers: the start of real algebraic geometry

We start with the following observation:

I Let t ∈ R. The number t ≥ 0 if and only if there exists a
number s ∈ R such that s2 = t.

Via developments in logic in the early 20th century, Tarski noted
that the above observation implies the systematic study of real
inequalities could be made algebraic.
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Positive polynomials in one variable

Theorem (Fejér-Riesz Theorem)

Let p(x) be a real polynomial in one variable.

The polynomial satisfies

p(x) ≥ 0 for all x ∈ R

if and only if
there exist real polynomials q1(x) and q2(x) such that

p(x) = q1(x)2 + q2(x)2.

We note that the above theorem is usually stated for trigonometric
polynomials and was very important in the classical study of
orthogonal polynomials.
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Proof of the Fejèr-Riesz Theorem

Suppose p(x) ≥ 0 for all x ∈ R.

We make some observations:

I The degree of p(x) must be even, since, for a polynomial of
odd degree, the asymptotics are of opposite sign as we go to
plus and minus infinity.

I Any real roots of p(x) must be of even order.

So, by the fundamental theorem of algebra, we know that
p(x) =

∏
i (x − λi )(x − λi ) =

∏
i |(x − λi )|2 for some λi ∈ C.

Therefore, there is a polynomial q over C such that p(x) = |q(x)|2,
namely q(x) =

∏
i (x − λi ). Taking the real and imaginary parts of

q to be q1 and q2, we see that p(x) = q1(x)2 + q2(x)2.
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Positive polynomials in several variables

Given p(x1, . . . , xd) a polynomial in d variables.

If p is nonnegative for all real inputs, is it the case that p is of the
form

p =
∑
finite

q2
i

for some polynomials qi?
No. (Hilbert, although explicit examples were found much later.)
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Motzkin polynomial

Theorem (Motzkin 1967)

The polynomial

p(x , y) = x4y2 + x2y4 − 3x2y2 + 1

is nonnegative, but is not a sum of squares of polynomials.

A modern proof of this fact can be obtained numerically via
semidefinite programming. The classical proof used some kind of
algebraic bean count.
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Motzkin polynomial as a rational function

The Motzkin polynomial can be rewritten

p(x , y) = x4y2 + x2y4 − 3x2y2 + 1

=

[
xy(x2 + y2 − 2)

x2 + y2

]2

+

[
xy2(x2 + y2 − 2)

x2 + y2

]2

+[
x2y(x2 + y2 − 2)2

x2 + y2

]2

+

[
x2 − y2

x2 + y2

]2

which gives us the sum of squares of rational functions
representation. (Schmüdgen)
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Hilbert’s 17th problem

Hilbert (1893) deduced in two variables that every positive
polynomial was the sum of four rational functions.

Hilbert’s seventeenth problem asks whether any positive
polynomial in several variables can be written as a sum of squares
of rational functions.
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The Artin theorem

Theorem (Artin)

Let p be a real polynomial in several variables.

The polynomial p is nonnegative for all real inputs
if and only if
there exist real rational functions qi such that

p(x) =
∑
finite

qi (x)2.

In fact, qi can be chosen such that they are well defined for all real
inputs. That is, their denominators can be chosen so that they
never vanish on real inputs. (Rational functions with such
nonvanishing denominators are sometimes called regular.) The
proof goes by a clever application of the Tarski principle.
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The Artin theorem over rational functions

By clearing denominators, one obtains the following result for
rational functions.

Theorem (Artin)

Let r be a real rational function in several variables.

The rational function r is nonnegative for all real inputs
if and only if
there exist real rational functions qi such that

r(x) =
∑
finite

qi (x)2.
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We will now shift our focus away from history to the
noncommutative setting.

The techniques involved will also shift from logic-algebra to
functional analysis.
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Free polynomials

A free polynomial is an expression involving +, the letters
x1, . . . , xd and scalar numbers.

For example,

p(x1, x2) = 7x1x
2
2x1 +−8000x1x2

is a free polynomial.
So is, For example,

p(x1, x2) = 2x2
2x

2
1x2 + x2

1 + x1x2

is a free polynomial.
Note that in the above example x1 and x2 do not commute. (That
is, x1x2 6= x2x1)
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Positive free polynomials

We say a free polynomial is nonnegative if it is positive
semidefinite for all self-adjoint operator inputs.

For example, the free polynomial

p(x1, x2) = x1x
2
2x1

is positive, since it can be written as

p(x1, x2) = x1x2(x1x2)∗.
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Helton’s theorem

Theorem (Helton 2002)

Let p be a free polynomial.

The free polynomial p is nonnegative
if and only if
there exist free polynomials qi such that

p =
∑

qiq
∗
i .

Note the difference from the commutative case: in the
noncommutative case a free polynomial can be written as a sum of
squares of free polynomials. (There is no mention of rational
functions.)
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Sketch of the proof of Helton’s theorem

The proof of Helton’s theorem goes by a cone-separation
argument.

Let C be the cone of sums of squares of free polynomials
of degree less than or equal to the degree of p.By the
Hahn-Banach theorem, if p is not a sum of squares we can find a
linear functional L which is nonnegative on all of C but satisfies
L(p) < 0.By the GNS construction, we can find a tuple of
self-adjoint operators (on a finite dimensional Hilbert space)
X = (X1, . . . ,Xd) and a vector v such that

L(q) = 〈q(X )v , v〉. when deg q < 2deg p

Now
L(p) = 〈p(X )v , v〉 < 0

which witnesses a tuple of self-adjoint operators where the p is not
positive semidefinite.
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Free rational functions

I A free rational expression is an expression involving +, (, ),−1

the letters x1, . . . , xd and scalar numbers.

I A free rational function is an equivalence class of
nondegenerate free rational expressions, where we regard two
expressions as equal if they are equal for all operators where
both are well defined. (Nondegeneracy means that the
expression is defined for at least one input, that is, examples
such as 0−1 are disallowed.)

Examples of free rational functions include

1, x1x
−1
1 , 1 + x2(8x3

1 + 8)−1.

We note that the first two are equal. (ie 1 = x1x
−1
1 )
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Regular free rational functions

I We say a free rational function r is regular if it can be defined
for all self-adjoint inputs. That is, for every self-adjoint input
X = (X1, . . . ,Xd), there is an expression for r which is defined
at X .

Note that all free polynomials are regular free rational
functions.There are many others, such as (1 + x1x2 − x2x1)−1.

Lemma (Klep, P., Volčič)

Any regular free rational function r has an expression which is
defined everywhere.

Follows from minimal realization theory.
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Any regular free rational function r has an expression which is
defined everywhere.

Follows from minimal realization theory.

17 / 23



The noncommutative Artin theorem

Theorem (Klep, P., Volčič)

Let r be a regular free rational function.

The free rational function
r is nonnegative
if and only if
there exist regular free rational functions qi such that

r =
∑

qiq
∗
i .

Here the situation is not as simple as clearing denominators as in
the commutative case. Additionally, we note that qi can be taken
to be in the subring of noncommutative rational functions
generated by subexpressions of a regular formula for r .
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The proof

The proof is similar to Helton’s 2002 result but requires finding the
right cone.

First we found a space S of expressions which played
the role of polynomials of degree less than or equal to the degree p
in Helton, then we executed the cone-separation argument of the
sums of squares of elements of S. For the GNS construction to
work, we needed various properties of S such as:

I p + q ∈ S ⇒ p, q ∈ S
I pq ∈ S ⇒ q ∈ S
I p−1q ⇒ pp−1q ∈ S

Regularity allowed us to conclude that what the GNS produced
would be in the domain of our rational function.
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Regular functions and Realizations

We developed methods for identifying regular functions in terms of
their minimal realizations.

A realization is a formula of the form

r(X ) = c∗(A0 +
∑

AiXi )
−1b.

(Here we have suppressed tensors.)
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Stably bounded functions

I A regular rational function r is said to be stably bounded if
there is an ε > 0 such that for all inputs with imaginary part
having norm less than ε, the function r is bounded.

I We showed that r is stably bounded if and only if for its
minimal realization there exists a D such that DA0 has
positive real part and each DAi is skew-self-adjoint for i > 0.
We called such realizations stably privileged.
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Privileged realizations

Let d ≥ e and L = A0 +
∑

j Ajxj with Aj ∈ Md ,e(R).

I We recursively define L to be privileged if

1. it is stably privileged; or
2. there exists D ∈ Me, d(R) such that

0 6= Re (DA0) ≥ 0, Re (DAj) = 0 for j > 0 and LV is
privileged, where columns of V form a basis for ker Re (DA0).

Theorem (Klep, P., Volčič)

A rational function is regular if and only if it has a privileged
realization.
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A rational function is regular if and only if it has a privileged
realization.

22 / 23



Regular and Positive noncommutative rational
functions

J. E. Pascoe

WashU

pascoej@math.wustl.edu

June 4, 2016

23 / 23


