
RESEARCH STATEMENT

J. E. PASCOE

My general research interests lie in functional analysis and its many varied applications,
including matrix inequalities, moment problems, several complex variables, noncommutative
function theory, multivariable operator theory, real algebraic geometry, and free probability.
I will briefly describe a result I proved with Ryan Tully-Doyle that I think exemplifies my
work and appeared in the Journal of Functional Analysis somewhat recently. After this
introduction, I will more briefly describe some of my other work and possible goals.

1. Introduction

Let H ⊂ C denote the complex upper half plane. That is,

H = {z ∈ C| Im z > 0}.

The Pick class is the set of analytic functions f : H → H. The elements of the Pick class
are called Pick functions.

The theory of Pick functions can be used to analyze matrix monotone functions via
Löwner’s theorem. Given a function f : (a, b) → R, we extend f via the functional cal-
culus to self-adjoint matrices A with spectrum in (a, b) by taking the diagonalization of A
by a unitary matrix U, that is,

A = U∗
[ λ1

λ2
...

]
U,

and defining

f(A) = U∗

[
f(λ1)

f(λ2)

...

]
U. (1.1)

A function f : (a, b)→ R is called matrix monotone if

A ≤ B ⇒ f(A) ≤ f(B)

where A ≤ B means that B − A is positive semidefinite.
The condition that a function f : (a, b) → R be matrix monotone is much stronger than

that f is monotone in the ordinary sense. For example, let the function f : R→ R be given
by the formula

f(x) = x3.

The function f is monotone on all of the real line, R. Note that

( 1 1
1 1 ) ≤ ( 2 1

1 1 ) ,

since
( 2 1
1 1 )− ( 1 1

1 1 ) = ( 1 0
0 0 )
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is a positive semidefinite matrix. However,

f ( 1 1
1 1 ) = ( 4 4

4 4 ) ,
f ( 2 1

1 1 ) = ( 13 8
8 5 ) ,

and

( 13 8
8 5 )− ( 4 4

4 4 ) = ( 9 4
4 1 )

which is not positive semidefinite since det ( 9 4
4 1 ) = −5 < 0. Thus, the function f(x) = x3 is

not matrix monotone even though it is monotone on all of R.
In [24], Charles Löwner showed the following theorem.

Theorem 1.1 (Löwner [24]). Let f : (a, b)→ R be a bounded Borel function. The function
f is matrix monotone if and only if f is real analytic and analytically continues to the upper
half plane as a function in the Pick class.

For a modern treatment of Löwner’s theorem, see e.g. [16, 10, 11].
Löwner’s theorem can be used to identify whether or not many classically important

functions are matrix monotone. For example, x1/3, log x, and − 1
x

are matrix monotone on
the interval (1, 2), but x3 and ex are not.

Via the connection to moment problems and matrix monotonicity, the theory of Pick
functions has deep and well-studied consequences for science and engineering. John von
Neumann and Eugene Wigner applied Löwner’s theorem to the theory of quantum collisions
[38, 37]. Other applications include quantum data processing [6], wireless communications
[23, 13] and engineering [7, 29].

With Ryan Tully-Doyle, I executed the program above in several noncommuting variables,
in the free functional calculus. For example, we seek to understand functions of matrix
variables, such as

f(X1, X2) =
√
X1X2 + X2X1,

where they are well-defined.
As is discussed in Section 8.1 of [21], the free functional calculus is used in the study of

scalable or dimensionless problems in systems engineering. Additionally, important alge-
braic and qualitative properties of functions are often accessible in the free case (see, e.g.,
[18, 14, 20]). A qualitative understanding of the free functional calculus is important for
applications; it may be a way to work around the fact that matrix calculations are compu-
tationally expensive when analyzing matrix inqualities.

A free polynomial is much like an ordinary polynomial, except that the variables do not
commute. For example

p(x1, x2) = 7x1x
2
2 + x2x1x2 − 8x15

1

and

q(x1, x2) = 8x1x
2
2 − 8x15

1

are both free polynomials which are not equal to eachother. (That is, since x1x2 6= x2x1,
x1x

2
2 6= x2x1x2.)

A free power series is like a normal power series in the sense that it is formula of the form

f(x1, x2, . . . , xd) =
∑
w∈I

aww(x1, x2, . . . , xd)
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where I is the set of all monomials, ie free polynomials with only one term like x1x
2
2, x2x1x2,

and x15
1 .

For our discussion the free functional calculus will consist of the free power series. In most
cases, we will need these series to converge on some set of tuples of same-sized matrices, such
as the n-tuples of contractions.

I proved the following generalization of Löwner’s theorem with Ryan Tully-Doyle:

Theorem 1.2 (P., Tully-Doyle[34]). Let

f(X1, . . . , Xd) =
∑
I∈I

cIX
I

be a free power series in d variables which converges absolutely for all X = (X1, . . . , Xd)
such that each ‖Xi‖ < 1. The function f is matrix monotone on the domain of convergence,
that is,

∀1≤i≤dXi ≤ Yi ⇒ f(X) ≤ f(Y ),

if and only if for each n, f analytically continues as a function on d-tuples of n by n matrices
over C with positive imaginary part (where Im W = (W −W ∗)/2i) so that

∀1≤i≤dIm Zi > 0⇒ Im f(Z) > 0.

That is, a function in several noncommuting variables is matrix monotone if and only if it
analytically continues to the matricial analogue of Hd as a noncommutative Pick function.
More recently, I have generalized the above theorem to hold for significantly more general
functions on domains and ranges in [33], but the spirit of the results in much the same.

2. Research and goals

One of the main themes of my research program is to take theorems from one variable
operator theory, many of which have powerful applications in engineering, and generalize
them to several variables, in the same way Löwner’s theorem was generalized above. The
program has two manifestations, both of which use essentially the same techniques: results
in several complex variables and results in the free functional calculus described above. My
other previous work includes:

Wedge-of-the-edge theorem[31]: The edge-of-the-wedge theorem is essentially an ex-
tension of the Schwarz reflection principle in several complex variables. A simple
version of the edge-of-the-wedge theorem is:

Theorem 2.1 (The edge-of-the-wedge theorem[36]). The is an open set D containing
Hd ∪ (−1, 1)d ∪ −Hd so that every function f : Hd ∪ (−1, 1)d → C which is
• continuous on Hd ∪ (−1, 1)d,
• analytic on Hd,
• and real-valued on (−1, 1)d.

analytically continues to D.

I proved that a similar phenomenon holds for Pick functions, analytic functions
from Hn into H which extend continuously to a region in Rn :

Theorem 2.2 (The wedge-of-the-edge theorem [31]). There is an open set D con-
taining 0 such that for any ε > 0, every function f : Hd ∪ (−1, ε)d ∪ (−ε, 1)d → H
which is
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• continuous on Hd ∪ (−1, ε)d ∪ (−ε, 1)d,
• analytic on Hd,
• and real-valued on (−1, ε)d ∪ (−ε, 1)d.

analytically continues to D.

The uniform estimates in [31] were used in [30] to relax the hypotheses of the
main result of a ground-breaking paper by Agler, McCarthy and Young on Löwner’s
theorem in several commuting variables[3].

Jacobian conjecture for free polynomial maps[35]: The classical Jacobian conjec-
ture states that a map p : Cd → Cd which is given by polynomials is injective if and
only if the derivative, which is given by the Jacobian matrix, is nonsingular every-
where. The classical Jacobian conjecture is notoriously difficult. On the other hand,
I solved a free analogue of the Jacobian conjecture. Namely, a free polynomial map is
injective as a function onMn(C)d for all n if and only if the derivative is nonsingular
everywhere on Mn(C)d for each n.

Invariant theory for free polynomials[15]: In recent years, authors in combinatorics[9,
5] and functional analysis[4] have had increased interest in symmetric free polyno-
mials. Classically, the theory of symmetric functions can be seen as a special case
of invariant theory, the theory of polynomials with symmetry. With David Cushing
and Ryan Tully-Doyle, I developed an invariant theory for free polynomials which is
suitable for analysis. Surprisingly, out of this theory came certain trade-offs in the
optimization of free polynomials. For example:

Proposition 2.3. Let p(x1, x2) be an even free polynomial. That is,

p(x1, x2) = p(−x1,−x2).

There is a unique free polynomial p̂(u1, u2, u3, u4) such that

p̂(x2
1, x1x2, x2x1, x

2
2) = p(x1, x2).

Furthermore,

sup
X1X∗

1+X2X∗
2≤1
‖p(X1, X2)‖ = sup

U1U∗
1+...+U4U∗

4≤1
‖p̂(U1, U2, U3, U4)‖

where the supremums range over all tuples of operators satisfying the given inequality.

A free polynomial in 4 variables can be converted to an even free polynomial in 2
variables and vice versa while still preserving the supremum of the norm. Reduction
of degree in the optimization of even free polynomials is useful since it would reduce
the number of matrix multiplications necessary for function evaluation, which is com-
putationally expensive. Investigating this trade-off more thoroughly is an important
research goal since it may enrich the noncommutative change of variables theory,
which was thought to be quite rigid[20, 19].

My planned future work includes:

Boundary approximation for Pick functions: My thesis concerns behavior of Pick
functions in several variables near the boundary. An important question along these
lines is: given a Pick function, is there an (inner) rational Pick function which nicely
approximates the original on Hd and some region in Rd? These kind of questions are
not only of theoretical interest but have real consequences of the understanding of
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matrix montone functions, and model-realization theory which have applications in
engineering.

Recently, in my work with Kelly Bickel and Alan Sola, which will appear in Pro-
ceedings of the London Mathematical Society [12] we analyzed integrability of the
derivatives of rational inner functions on the bidisk and the algebraic geometry of
stable polynomials which we hope will shed some light on approximation theory here.

Moreover, my research program on Julia-Caratheodory type theorems has also
shed some light on the local behavior of Pick functions on the distinguised boundary,
and their conformal analogues, in a way that is somewhat relevant to these kinds of
approximation theory questions and is also of interest from the point of view of several
complex variables. Specifically, with John McCarthy, we have improved the Julia-
Caratheodory theorem on the bidisk in [28], and extended it to noncommutative
domains in [27]. Moreover, I have obtained higher order analogues of the Julia-
Caratheodory theorem on the bi upper half plane[32] which are then amenable to
rational approximation problems via the Hankel vector moment calculus developed
by Agler and McCarthy in [2].

Convex functions: Kraus classically showed that matrix convex functions, have sim-
ilar analytic continuation properties to those exhibited in Löwner’s theorem[26]. In
fact, the two theories are deeply connected in one variable. (In fact, Kraus was
Löwner’s PhD student[1].) For example, in Bhatia’s book, Matrix Analysis, the
topics of matrix monotone and matrix convex functions in one variable are covered
in the same chapter[10]. Furthermore, Helton, McCullough and Vinnikov have de-
scribed the theory of rational convex functions in the noncommmutative setting[22].
Thus, a general theory of convex functions, their analytic continuations and other
qualitative properties in noncommuting variables may not be far off. In a very spe-
cific case where the domain of a matrix convex function is quite large, (which is an
extremely restrictive case) we recently showed that all matrix convex functions must
be actually be quadratic functions[17].

Concrete Agler model-realization theory: Most of my work depends on Agler model-
realization theory. For the most part, the existence of models has been proven non-
constuctively. Recent work by Greg Knese in the commutative case for rational
functions[25] and by Joseph A. Ball, Vladimir Bolotnikov and Quanlei Fang in the
noncommutative case[8] suggests that a constructive theory may exist in general.
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