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CONTINUATION OF MULTIVARIABLE PICK FUNCTIONS IN

AND AROUND THE BOUNDARY
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Abstract. In 1956, quantum physicist N. Bogoliubov discovered the edge-of-
the-wedge theorem, a theorem used to analytically continue a function through

the boundary of a domain under certain conditions. We discuss an analogous

phenomenon, a wedge-of-the-edge theorem, for the boundary values of Pick
functions, functions from the poly upper half plane into the half plane. We

show that Pick functions which have a continuous real-valued extension to a

union of two hypercubes with a certain orientation in Rd have good analytic
continuation properties. Furthermore, we establish bounds on the behavior of

this analytic continuation, which makes normal families arguments accessible

on the boundary for Pick functions in several variables. Moreover, we obtain
a Hartog’s phenomenon type result for locally inner functions.

Contents

1. Introduction 1
1.1. Pick functions and the wedge-of-the-edge theorem 2
1.2. Some examples 3
1.3. The detailed wedge-of-the-edge theorem 3
2. Estimating homogeneous polynomials using their values on a hypercube 4
3. The proof of the detailed wedge-of-the-edge theorem 9
References 9

1. Introduction

Let Π denote the upper half plane in C.
Consider the Schwarz reflection principle.

Theorem 1.1 (Schwarz reflection principle). A function f : Π∪(−1, 1)→ C which
is

• continuous on Π ∪ (−1, 1),
• analytic on Π,
• and real-valued on (−1, 1),

analytically continues to Π ∪ (−1, 1) ∪ −Π.
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That is, a function on the upper half plane which has a continuous real-valued
extension to (−1, 1) analytically continues through (−1, 1) to the lower half plane.

What is the generalization of the Schwarz reflection principle to several variables?
Consider a function f : Π2 ∪ (−1, 1)2 → C which is

• continuous on Π2 ∪ (−1, 1)2,
• analytic on Π2,
• and real-valued on (−1, 1)2.

We would like to say that f analytically continues to Π2 ∪ (−1, 1)2 ∪ −Π2 by
analogy with the reflection principle. However, Π2 ∪ (−1, 1)2 ∪−Π2 is not an open
set; so it is unclear what saying analytically continues would mean.

The reflection principle in several variables we will discuss is called the edge-of-
the-wedge theorem. Rudin wrote an excellent text on the subject, called Lectures
on the edge-of-the-wedge theorem [14].

Theorem 1.2 (The edge-of-the-wedge theorem). The is an open set D containing
Πd ∪ (−1, 1)d ∪ −Πd so that every function f : Πd ∪ (−1, 1)d → C which is

• continuous on Πd ∪ (−1, 1)d,
• analytic on Πd,
• and real-valued on (−1, 1)d,

analytically continues to D.

1.1. Pick functions and the wedge-of-the-edge theorem. An analytic func-
tion

f : Πd → Π

is called a Pick function.
Charles Löwner showed that a function f : (−1, 1)→ R that is matrix monotone,

in the sense that for any two self-adjoint matrices A,B with spectrum in (−1, 1),

A ≤ B ⇒ f(A) ≤ f(B),

must actually be the restriction of an analytic function on Π∪(−1, 1)∪−Π whose re-
striction to Π is a Pick function [11]. Löwner’s theorem is valuable tool in the theory
of matrix inequalities which has been applied in engineering[6, 9] and science[16, 15].
Agler, McCarthy and Young showed that an analogue of Löwner’s Theorem holds
for Pick functions in several variables [4].

We now give the wedge-of-the-edge theorem.

Theorem 1.3 (The wedge-of-the-edge theorem ). There is an open set D contain-
ing 0 such that for any ε > 0, every function f : Πd∪ (−1, ε)d∪ (−ε, 1)d → Π which
is

• continuous on Πd ∪ (−1, ε)d ∪ (−ε, 1)d,
• analytic on Πd,
• and real-valued on (−1, ε)d ∪ (−ε, 1)d,

analytically continues to D.
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⇒ D

Figure 1. A graphical representation of the wedge-of-the-edge
theorem, which appears analogous to the picture for the edge-of-
the-wedge theorem. However, here we are in R2, which is the edge
in the edge-of-the-wedge theorem and we are analytically continu-
ing off the intersection of two wedges in R2.

1.2. Some examples. The function
√
xy is defined and real on [−1, 0]2 ∪ [0, 1]2.

Also, it analytically continues to Π2 as a Pick function. However, it cannot extend
to a neighborhood of 0 because

√
xy has a branch cut.

For any t, the function x
1−txy defines a Pick function. Furthermore, each of these

is real-valued on (−ε, 1)× (−1, ε) ∪ (−1, ε)× (−ε, 1) for small enough ε. However,
for large t, the singular set of these function approach to being the x and y axes.
That is, there is not a fixed set D so that all the functions in this family analytically
continue to a neighborhood of 0. So, orientation matters.

1.3. The detailed wedge-of-the-edge theorem. We give a wedge-of-the-edge
theorem with precise bounds included. When it is clear from context, we will abuse
notation so that 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1).

Theorem 1.4 (The detailed wedge-of-the-edge theorem). Let f : Πd → Π be a
Pick function which has a continuous real-valued extension to (−1, ε)d ∪ (−ε, 1)d.
For any h ∈ Cd,

|f
(n)(0)[h]

n!
| ≤ 6 · 60n‖h‖n|f

′
(0)[1]|.

(Here, f (n)(0)[h] = dn

dtn f(th)|t=0, and ‖h‖ = ‖h‖∞ = max |hi|.)
Namely, each f analytically continues to

D =

{
z ∈ Cd|‖z‖ < 1

60

}
and, for all z ∈ D

|f(z)− f(0)| ≤ 360‖z‖
1− 60‖z‖

|f
′
(0)[1]|.

Here, 60 is not a sharp constant and can probably be endlessly improved if
it is necessary for a given application. In fact, it is possible to conjecture that
the power series of f around zero absolutely converges on [0, 1]d, which would
then imply continuation to all ‖z‖ < 1. However, we are essentially interested in
establishing the existence of uniform estimates which are independent of dimension.
The detailed wedge-of-the-edge is proven in Section 3.
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The detailed wedge-of-the-edge theorem gives the following corollary, which
makes normal families arguments accessible on the boundary for Pick functions.

Corollary 1.5. Let E ⊆ Rd be a connected open set. Let (fn)∞n=1 be a sequence of
Pick functions in d variables which have a continuous real-valued extension to E.
The following are equivalent:

(1) The sequence (fn)∞n=1 has a subsequence which converges uniformly on com-
pact sets of Πd ∪E to a Pick function f which has a continuous real-valued
extension to E.

(2) There is a point a ∈ E such that fn(a) is bounded and f ′n(a)[1] is bounded.

Corollary 1.5 follows from the detailed wedge-of-the-edge theorem directly, since
it implies the existence of uniformly bounded analytic continuation which is then
subject to classical normal families argument.

Finally, we mention a Hartog’s principle type phenomenon which follows trivially
from the wedge-of-the-edge theorem.

Corollary 1.6. Let E ⊆ Rd be an open set. Let p ∈ E. If f is Pick function in
d variables which has a continuous real-valued extension to E \ {p} then, it has a
continuous real-valued extension to E.

Now, letting Dd denote the polydisk and Td denote the distinguished boundary,
we obtain that near a singular point p of a locally inner function, every contour must
intersect at p. Specifically, the following corollary applies to rational inner functions
and gives some idea about the geometry of their contours in the boundary.

Corollary 1.7. Let E ⊆ Td be an open set. Let p ∈ E. Let ϕ : Dd → D be an
analytic function with a continuous unimodular extension to E \ {p}. Either ϕ has
a continuous unimodular extension to E, or each contour Cw = {w ∈ E|ϕ(w) =
τ ∈ T} has p in its closure.

2. Estimating homogeneous polynomials using their values on a
hypercube

The goal of this section will be to prove the following fact which will be crucial
to prove the detailed wedge-of-the-edge theorem.

Lemma 2.1. If p(x) is a homogeneous polynomial of degree n in d variables such
that |p(x)| ≤ 1 for all x ∈ [0, 1]d, then, for all z ∈ Cd

|p(z)| ≤ (3
√

2)n‖z‖n 39/4

64

[
(1 +

√
2)n+1 + (1−

√
2)n+1

]3
.

Namely,

|p(z)| ≤ 6 · 60n‖z‖n.

The essential part of Lemma 2.1 is the first inequality. The second inequality is
meant to be a transparent estimate of the first and can be derived from it using a
calculator. Since the first inequality is in the more exact form, it is far from clear
what the numbers actually mean, and because our methods are somewhat näıve,
it is unclear whether they are meaningful at all. To prove the lemma, we will use
bounds from interpolation theory.
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Let x0, . . . , xn be distinct points in [0, 1] and λ0, . . . , λn ∈ C. There is a unique
polynomial p of degree n such that p(xi) = λi. Specifically, it is given by the
Lagrange interpolation formula,

p(x) =

n∑
i=0

λi
∏
i 6=j

x− xj
xi − xj

. (2.1)

However, p(x) may take exceptionally large values in the interval [0, 1], a fact known
as Runge’s phenomenon. Because of Runge’s phenomenon, polynomial interpola-
tion is often considered bad from the point of view of approximation theory. How-
ever, estimates originally derived to uncover how bad Runge’s phenomenon can be
will suffice for our purposes - the phenomenon is not superexponentially bad and
so we will be able to use the estimates to establish the convergence of power series
later on.

For example, let xi = i
n . The Lagrange interpolation formula (2.1) becomes

p(x) =

n∑
i=0

λi
∏
i 6=j

x− j
n

i
n −

j
n

,

which can be simplified to

p(x) =

n∑
i=0

λi
nn

n!

(
n

i

)∏
i 6=j

x− j

n
.

Now, for any z ∈ C,

|p(z)| ≤
n∑

i=0

|λi|
nn

n!

(
n

i

)
(|z|+ 1)n

|p(z)| ≤ max |λi|
nn

n!
(|z|+ 2)n

Thus, applying the estimate, nn

n! ≤ e
n+1, which can be derived using the freshman

calculus, we get that

|p(z)| ≤ max |λi|en+1(|z|+ 2)n.

So, we can imagine that some kind of exponential estimates as in Lemma 2.1 are
plausible, with näıve calculations as above.

Interpolation is captured in terms of linear algebra by Vandermonde matrices.
The interpolation problem can be rephased as trying to find ai such that

∑
akx

k
i =

λi. That is, 
1 x1 . . . xn1
1 x2 . . . xn2
...

...
. . .

...
1 xn . . . xnn



a0
a1
...
an

 =


λ0
λ1
...
λn


So, letting

V =


1 x1 . . . xn1
1 x2 . . . xn2
...

...
. . .

...
1 xn . . . xnn

 , a =


a0
a1
...
an

 , λ =


λ0
λ1
...
λn

 ,

we want to solve

V a = λ,
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for a, which is given by the formula

a = V −1λ.

So, ultimately, we want to find some kind of norm estimates on V −1 to bound a
which then give bounds on the values of the polynomial.

Certain choices of (xi)
n
i=0, the interpolation nodes, are better conditioned than

others. From our perspective, good nodes are the so-called Chebychev nodes.

Theorem 2.2 (Gautschi [7]). Let n ∈ N. Let x̃k = cos( 2k+1
n+1 π). Let Ṽn be the

Vandermonde matrix corresponding to x̃i. Then,

‖Ṽ −1n ‖∞ ≤
33/4

4(n+ 1)

[
(1 +

√
2)n+1 + (1−

√
2)n+1

]
.

So given a polynomial p(x) =
∑n

i=0 aix
i such that |p(x)| ≤ 1 on [−1, 1] we get

that

|p(z)| ≤ max(1, |z|)n 33/4

4

[
(1 +

√
2)n+1 + (1−

√
2)n+1

]
,

using the estimate above. Specifically, since each x̃i ∈ (−1, 1), we know that

|f(x̃i)| ≤ 1. So let λi = f(x̃i). Note ‖λ‖ ≤ 1. So, since a = Ṽ −1n λ, we get that

|ai| ≤ ‖Ṽ −1n ‖∞‖λ‖∞ ≤
33/4

4(n+ 1)

[
(1 +

√
2)n+1 + (1−

√
2)n+1

]
.

Now note that

|p(z)| ≤
n∑

i=0

|ai||z|i ≤ (n+ 1) max
i

(|ai|) max
i

(|zi|),

which can then be simplified to the original claim.
To establish Lemma 2.1, we need to understand how the above argument works

in several variables. There, however, the situation for interpolation is more dire.
Let x1, . . . , xn ∈ Cn. Fix some corresponding multi-indices I1, . . . In. The linear
system given by the equations ∑

aIx
I
i = λi

for each i could be singular in some non-trivial way if all the points lie on some
hidden variety with low degree defining polynomials. For example, let

x1 = (1, 0), x2 = (0, 1), x3 = (−1, 0).

Fix the multi-indices to be

I1 = (0, 0), I2 = (2, 0), I3 = (0, 2).

The linear system for interpolation is given by

aI1 + aI2x
I2
1 + aI3x

I3
1 = aI1 + aI2 = λ1

aI1 + aI2x
I2
2 + aI3x

I3
2 = aI1 + aI3 = λ2

aI1 + aI2x
I2
3 + aI3x

I3
3 = aI1 + aI2 = λ3.

However, the above is singular, essentially because the points lie on a circle. So,
we will choose the points and the multi-indices in such a way that we avoid this
problem.

However if we choose the nodes, x(n1,...,nd) = (x̃n1
, . . . , x̃nd

) for all (n1, . . . , nd) ∈
{0, . . . , n}d where x̃ are as in Theorem 2.2 and the multi-indicies to be all (n1, . . . , nd) ∈
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{0, . . . , n}d, we get that the interpolating matrix has a special form which can be
nicely summed up in terms of Kronecker products. The Kronecker product of two
matrices A = (aij)1≤i,j≤n, and B = (bkl)1≤k,l≤m is given by the block matrix
A⊗B = (aijB)1≤i,j≤n. For example,

(
0 1
2 3

)
⊗
(

4 5
6 7

)
=

0

(
4 5
6 7

)
1

(
4 5
6 7

)
2

(
4 5
6 7

)
3

(
4 5
6 7

)
 =


0 0 4 5
0 0 6 7
8 10 12 15
12 14 18 21


Observation 2.3. The matrix

Vn = Ṽ ⊗dn = Ṽn ⊗ . . .⊗ Ṽn︸ ︷︷ ︸
d times

is the Vandermonde matrix corresponding to the nodes x(n1,...,nd) = (x̃n1 , . . . , x̃nd
)

for all (n1, . . . , nd) ∈ {0, . . . , n}d where x̃ are as in Theorem 2.2. and the multi-
indicies to be all (n1, . . . , nd) ∈ {0, . . . , n}d. Moreover,

‖V −1n ‖∞ = ‖Ṽ −1n ‖d∞.

For example, consider the degree one, two variable case. We have that

Ṽ1 =

(
1 x̃0
1 x̃1

)
.

So,

Ṽ1 ⊗ Ṽ1 =


1 x̃0 x̃0 x̃20
1 x̃1 x̃0 x̃0x̃1
1 x̃0 x̃1 x̃1x̃0
1 x̃1 x̃1 x̃21

 ,

which corresponds problem of finding a polynomial with monomials 1, x1, x2, x1x2
that interpolates certain values at the four points

(x̃0, x̃0), (x̃1, x̃0), (x̃0, x̃1), (x̃1, x̃1).

So, via the same method as in one variable, we can obtain the following.

Lemma 2.4. Let p be a polynomial in three variables such that |p(x)| ≤ 1 for all
x ∈ [−1, 1]3. Then,

|p(z)| ≤ max(1, ‖z‖)n 39/4

64

[
(1 +

√
2)n+1 + (1−

√
2)n+1

]3
.

Proof. Let p(x) =
∑
aIx

I be a polynomial in 3 variables of degree n such that
|p(x)| ≤ 1 on [−1, 1]3. Applying Observation 2.3 and Theorem 2.2 we get that

|aI | ≤ ‖V −1n ‖∞ ≤
[

33/4

4(n+ 1)

[
(1 +

√
2)n+1 + (1−

√
2)n+1

]]3
.

Now note that

|p(z)| ≤
∑
|aI ||z|I ≤

(
# of monomials of

degree ≤ n

)
max

I
(|aI |) max

I
(|zI |),

which can then be simplified to the original claim using the observation that there
are less than (n+ 1)3 monomials of degree less than or equal to n. �

Now, we will homogenize the result to obtain something like Lemma 2.1 for
d = 4.
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Lemma 2.5. Let p be a homogenous polynomial in four variables such that |p(x)| ≤
1 for all x ∈ [0, 1]4. Then,

|p(z)| ≤ 3n‖z‖n 39/4

64

[
(1 +

√
2)n+1 + (1−

√
2)n+1

]3
,

Proof. Let p be a homogenous polynomial in four variables such that |p(x)| ≤ 1 for
all x ∈ [0, 1]4. Namely,

|p(1, x2, x3, x4)| ≤ 1

for all (x2, x3, x4) ∈ [0, 1]3. We will now change variables via yi = 2xi+1 − 1. So

|p(1, y1 + 1

2
,
y2 + 1

2
,
y2 + 1

2
)| ≤ 1.

for all (y1, y2, y3) ∈ [−1, 1]3. So,

|p(1, y1 + 1

2
,
y2 + 1

2
,
y2 + 1

2
)| ≤ max(1, ‖y‖)n 39/4

64

[
(1 +

√
2)n+1 + (1−

√
2)n+1

]3
for all y ∈ C3. Changing back we get that

|p(1, x2, x3, x4)‖ ≤ max(1, ‖2x− 1‖)n 39/4

64

[
(1 +

√
2)n+1 + (1−

√
2)n+1

]3
,

for all (x2, x3, x4) ∈ C3. Rehomogenizing, we get that

|p(x1, x2, x3, x4)‖ ≤

max(|x1|, |2x2 − x1|, |2x3 − x1|, |2x4 − x1|)n
39/4

64

[
(1 +

√
2)n+1 + (1−

√
2)n+1

]3
.

Note, that max(|x1|, |2x2 − x1|, |2x3 − x1|, |2x4 − x1|) ≤ 3‖x‖, so we are done. �

Näıvely could do this for any d, to obtain a bound of

|p(z)| ≤ 3n‖z‖n
(

33/4

4

)d [
(1 +

√
2)n+1 + (1−

√
2)n+1

]d
,

but we desire a uniform estimate. So instead, we use four dimensional slices to
obtain better bounds.

We now prove Lemma 2.1.

Proof of Lemma 2.1. Let p be a homogeneous polynomial in d variables of degree n
such that |p(x)| ≤ 1 for x ∈ [0, 1]d. Let z = (z1, . . . , zd) be such that ‖z‖ = 1. (Note
that it is sufficient to prove the claim for ‖z‖ = 1 since p is homogeneous.) Note
z can be decomposed as z = x+ − x− + iy+ − iy−, where x+, x−, y+, y− ∈ [0, 1]d.
Define

g(t1, t2, t3, t4) = p

(
t1x

+ + t2x
− + t3y

+ + t4y
−

√
2

)
.

Note that |g(t)| ≤ 1 for all t ∈ [0, 1]4. So we get that

g(1,−1, i,−i) ≤ 3n
39/4

64

[
(1 +

√
2)n+1 + (1−

√
2)n+1

]3
by Lemma 2.5. Note,

g(
√

2,−
√

2, i
√

2,−i
√

2) =
√

2
d
g(1,−1, i,−i) = p(z).

Thus,

|p(z)| ≤ (3
√

2)n
39/4

64

[
(1 +

√
2)n+1 + (1−

√
2)n+1

]3
.
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�

3. The proof of the detailed wedge-of-the-edge theorem

To continue, we will need a tool used in the proof of the original wedge-of-the-
edge theorem. The following inequality was derived using the Nevanlinna repre-
sentations in one [12] and two variables [5] and is a higher order analogue of the
Julia inequality[13]. (The Julia inequality itself has been well-studied in one [10],
two[3], and several variables[1, 2, 8].) We include a proof for completeness since it
is somewhat simpler in the specific case we consider here.

Lemma 3.1 (Theorem 4.3[13]). Let f be a Pick function in d variables which has
a continuous real-valued extension to (−1, ε)d ∪ (−ε, 1)d. Then, for all h ∈ [0, 1]d

|f
(n)(0)[h]

n!
| ≤ |f

′
(0)[1]|.

Proof. Let h ∈ [0, 1]d. Note f ′(0)[h] is exists because the function is analytic at 0
by the edge-of-the-wedge theorem and is real. So, f ′(0)[h] = Re f ′(0)[h]. Now,

f ′(0)[h] = Re lim
t→0

f(ith)− f(0)

it
= lim

t→0

Im f(ith)

t
≥ 0.

So, by linearity of the derivative,

f ′(0)[1]− f ′(0)[h] = f ′(0)[1− h] ≥ 0.

That is, |f ′(0)[h]| ≤ |f ′(0)[1]|.
So now, it is enough show that

|f
(n)(0)[h]

n!
| ≤ |f

′
(0)[h]|.

Consider the Pick function of one variable g(z) = f(hz) which extends continuously
to (−1, 1). Let g(z) be given by the power series

∑
aiz

i at 0. The claim is now
equivalent to showing that a1 ≥ an for all n ≥ 1. Nevanlinna showed in [12] that
there exists a measure µ on [−1, 1] such that

ai+1 =

∫
[−1,1]

xidµ.

Therefore, a1 ≥ |an| for all n ≥ 1, so we are done. �

Now, we now note that the detailed wedge-of-the-edge theorem follows directly
from the above Lemma and Lemma 2.1.
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