Putnam Practice Problems

Practice Set 1

1. The number 2^{29} has nine distinct digits. How can you find the missing number between 0 and 9 without using a calculator?
2. Let S be a subset of $\{1,2,3, \ldots, 100\}$ of size 55 . Show that S has a pair of elements differing by 12 . By giving an example, show that it is not necessarily true that S has a pair differing by 11 .
3. (a) Let $a_{0}, a_{1}, a_{2}, a_{3}$ and n be integers such that a_{0} is not divisible by 11 and:

$$
a_{0}+a_{1} n+a_{2} n^{2}+a_{3} n^{3}
$$

is divisible by 11. Prove that there is an integer m such that:

$$
a_{3}+a_{2} m+a_{1} m^{2}+a_{0} m^{3}
$$

is divisible by 11 .
(b) Show that for any prime integer p, there is a positive integer n such that:

$$
2^{n}+3^{n}+6^{n}-1
$$

is divisible by p.
4. Show that for any n the sequence:

$$
2,2^{2}, 2^{2^{2}}, 2^{2^{2^{2}}}, \ldots \quad \bmod n
$$

is eventually constant.
5. For $n \geq 3$, let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of prime numbers that forms an arithmetic progression. Show that the common difference is divisible by any prime p which is less than n.
6. Find all solutions of:

$$
2^{x} 3^{y}=5^{z}+1
$$

7. For a prime p, let:

$$
\frac{m}{p n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p} .
$$

Prove that $m-n$ is divisible by p^{3}.
8. Show that there exists an increasing sequence of positive integers $\left\{a_{n}\right\}_{n}$ such that for any non-negative integer $k \geq 0$, the sequence $\left\{k+a_{n}\right\}_{n}$ contains only finitely many primes.
9. Prove that the following system of equations have infinitely many solutions among integers:

$$
\left\{\begin{array}{l}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=l^{5} \\
x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}=m^{2} \\
x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}=m^{3}
\end{array}\right.
$$

10. A lattice point $(m, n) \in \mathbb{Z} \times \mathbb{Z}$ in the 2-dimensional plane is called visible if m and n are coprime. Show that for each positive r there is a point $(k, l) \in \mathbb{Z} \times \mathbb{Z}$ such that its distance from any visible point is at least r.
11. Prove that for each positive integer n, the number

$$
10^{10^{10^{n}}}+10^{10^{n}}+10^{n}-1
$$

is not prime.

