Washington University in St. Louis, Fall 2019

1. Let

$$
f(n)=\sum_{k=1}^{n} \frac{1}{\sqrt{k}+\sqrt{k+1}} .
$$

Evaluate $f(9999)$.
2. Take a walk on the number line, starting at 0 , by on the first step taking a step of length one, either right or left, on the second step taking a step of length two, either right or left, and in general on the k-th step taking a step of length k, either right or left.
(a) Prove that for each integer m, there is a walk that visits (has a step ending at) m.
(b) Let $f(m)$ denote the least number of steps needed to reach m. Show that

$$
\lim _{m \rightarrow \infty} \frac{f(m)}{\sqrt{m}}
$$

exists, and find the value of the limit.
3. Let a_{n} be the number of different ways of covering a 1 by n strip with 1 by 1 and 1 by 3 tiles. Prove that $a_{n}<(1.5)^{n}$.
4. Define a sequence $\left\{a_{n}\right\}_{n \geq 1}$ by

$$
a_{1}=1, \quad a_{2 n}=a_{n}, \quad \text { and } \quad a_{2 n+1}=a_{n}+1 .
$$

Prove that a_{n} counts the number of 1's in the binary representation of n.
5. The numbers 1 through $2 n$ are partitioned into two sets A and B of size n, in an arbitrary manner. The elements a_{1}, \ldots, a_{n} of A are sorted in increasing order, that is, $a_{1}<a_{2}<\cdots<$ a_{n}, while the elements b_{1}, \ldots, b_{n} of B are sorted in decreasing order, that is, $b_{1}>b_{2}>\cdots>b_{n}$. First (with proof) the value of the sum

$$
\sum_{i=1}^{n}\left|a_{i}-b_{i}\right| .
$$

6. Let S be a finite set of integers, each greater than 1 . Suppose that for each integer n there is some $s \in S$ such that $\operatorname{gcd}(s, n)=1$ or $\operatorname{gcd}(s, n)=s$. Show that there exist $s, t \in S$ such that $\operatorname{gcd}(s, t)$ is prime.
7. The octagon $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} P_{7} P_{8}$ is inscribed in a circle, with the vertices around the circumference in the given order. Given that the polygon $P_{1} P_{3} P_{5} P_{7}$ is a square of area 5 , and the polygon $P_{2} P_{4} P_{6} P_{8}$ is a rectangle of area 4 , find the maximum possible area of the octagon.
8. Let B be a set of more than $2^{n+1} / n$ distinct points with coordinates of the form $(\pm 1, \pm 1, \ldots, \pm 1)$ in n-dimensional space with $n \geq 3$. Show that there are three distinct points in B with are the vertices of an equilateral triangle.
9. Prove that the expression

$$
\frac{\operatorname{gcd}(m, n)}{n}\binom{n}{m}
$$

is an integer for all pairs of integers $n \geq m \geq 1$.
10. Let S_{0} be a finite set of positive integers. We define finite sets S_{1}, S_{2}, \ldots of positive integers as follows: the integer a is in S_{n+1} if and only if exactly one of $a-1$ or a is in S_{n}. Show that there exist infinitely many integers N for which $S_{N}=S_{0} \cup\left\{N+a \mid a \in S_{0}\right\}$.

