Analysis

Themes include limits, (Riemann) sums, recurrences and functional equations.

1. Let $f(x)$ be an infinitely differentiable real function defined on some open interval containing $[0,1]$. For $n=1,2,3, \ldots$ let f satisfy $f\left(\frac{1}{n}\right)=$ $n^{2} /\left(1+n^{2}\right)$. From this determine all derivatives of f at $x=0$.
2. Let $f:[-1,1] \rightarrow \mathbb{R}$ be a continuous function satisfying
(a) $f(x)=\frac{2-x^{2}}{2} f\left(\frac{x^{2}}{2-x^{2}}\right)$ for all $x \in[-1,1]$,
(b) $f(0)=1$, and
(c) $\lim _{x \rightarrow 1^{-}} f(x) / \sqrt{1-x}$ exists and is finite.

Prove that $f(x)$ exists, is unique, and determine $f(x)$ in closed form.
3. For every positive integer n, show that

$$
\left(\frac{2 n-1}{e}\right)^{\frac{2 n-1}{2}}<1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)<\left(\frac{2 n+1}{e}\right)^{\frac{2 n+1}{2}}
$$

4. For z in the subset $D=\{z \in \mathbb{C}:|z| \leq 1, z \neq 1\}$ of the complex plane, consider

$$
s(z)=\sum_{n=1}^{\infty} z^{n} / n
$$

Show that in D, the right hand side converges and defines a continuous function.
5. Let q be an integer with $q \equiv 3 \bmod 4$. Show that for any positive integer n the number $\sum_{k=0}^{\infty}(-1)^{k}\binom{n}{2 k} q^{k}$ is divisible by 2^{n-1}.
6. Calculate

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^{2} n}{3^{m}\left(n 3^{m}+m 3^{n}\right)}
$$

7. Let f be a continuous and monotonously increasing function on $[0,1]$ with $f(0)=0$ and $f(1)=1$ and inverse function f^{-1}. Prove that $f(0.1)+f(0.2)+\ldots+f(0.9)+f^{-1}(0.1)+f^{-1}(0.2)+\ldots+f^{-1}(0.9) \leq 9.9$.
8. For x with $|x| \neq 1$ calculate

$$
\sum_{n=0}^{\infty} \frac{x^{\left(2^{n}\right)}}{1-x^{\left(2^{n+1}\right)}}
$$

9. Evaluate

$$
\log _{2}\left(\prod_{a=1}^{2015} \prod_{b=1}^{2015}\left(1+e^{\frac{2 \pi i a b}{2015}}\right)\right)
$$

10. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{4}} \prod_{j=1}^{2 n}\left(n^{2}+j^{2}\right)^{1 / n}
$$

11. Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series of positive real numbers. Prove that $\sum_{n=1}^{\infty} a_{n}^{n /(n+1)}$ also converges.
12. Determine all real functions f defined on $\mathbb{R} \backslash\left\{-\frac{1}{3}, \frac{1}{3}\right\}$ that satisfy

$$
f\left(\frac{x+1}{1-3 x}\right)+f(x)=x .
$$

