Washington University in St. Louis, Fall 2019
Note: This week's problem set has two themes: the pigeonhole principle and combinatorics.

1. (Putnam 2006) Alice and Bob play a game in which they take turns removing stones from a heap that initially has n stones. The number of stones removed at each turn must be one less than a prime number. The winner is the player who takes the last stone. Alice plays first. Prove that there are infinitely many n such that Bob has a winning strategy. (Here's an example of a winning strategy: If $n=17$, then Alice might take 6 leaving 11; Bob might take 1 leaving 10; then Alice can take the remaining stones to win.)
2. 10 points are placed randomly on a 1×1 square. Show that there must be some pair of points that are within distance $\sqrt{2} / 3$ of each other.
3. Given a sequence a_{1}, \ldots, a_{m} of length m, show that there is a consecutive subsequence whose sum is divisible by m. (A consecutive subsequence means a subsequence $a_{i}, a_{i+1}, a_{i+1}, \ldots, a_{i+j-1}$ of length j, where j could be as small as one.)
4. Show that for any set of five integers, we can always choose three of these integers whose sum is a multiple of 3 .
5. (Putnam 2010) There are 2010 boxes labeled $B_{1}, B_{2}, \ldots, B_{2010}$, and $2010 n$ balls have been distributed among them, for some positive integer n. You may redistribute the balls by a sequence of moves, each of which consists of choosing an i and moving exactly i balls from box B_{i} into any one other box. For which values of n is it possible to reach the distribution with exactly n balls in each box, regardless of the initial distribution of balls?
6. (a) (This is often called Posá's soup problem.) 51 different integers are chosen between 1 and 100, inclusive. Show that some two of them are coprime (have no prime factor in common).
(b) 51 different integers are chosen between 1 and 100, inclusive. Show that there are some two of them such that one divides the other.
7. (Putnam 2003) Let n be a fixed positive integer. How many ways are there to write n as a sum of positive integers, $n=a_{1}+a_{2}+\cdots+a_{k}$, with k an arbitrary positive integer and $a_{1} \leq a_{2} \leq \cdots \leq a_{k} \leq a_{1}+1$. For example, with $n=4$ there are four ways: $4,2+2,1+1+2$, $1+1+1+1$.
8. (Harvey Mudd Putnam prep class) A house has one entrance and many rooms. Every room has 1,2 or 4 doors, and these doors lead directly to other rooms or to the outside. The rooms with 1 door are precisely the bathrooms. Prove that this house must have an odd number of bathrooms.
9. (Putnam 2006) Prove that, for every set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of n real numbers, there exists a non-empty subset S of X and an integer m such that

$$
\left|m+\sum_{s \in S} s\right| \leq \frac{1}{n+1}
$$

10. (Putnam 2013) Define a function $w: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ as follows. For $|a|,|b|<2$, let $w(a, b)$ be as in the table shown; otherwise, let $w(a, b)=0$.

	-2	-1	0	1	2
	-2	-1	-2	2	-2
	-1	-2	4	-4	4
a	0	2	-4	12	-4
1	-2	4	-4	4	-2
2	-1	-2	2	-2	-1

For every finite subset S of $\mathbb{Z} \times \mathbb{Z}$, define

$$
A(S)=\sum_{\left(s, s^{\prime}\right) \in S \times S} w\left(s-s^{\prime}\right)
$$

Prove that if S is an finite nonempty subset of $\mathbb{Z} \times \mathbb{Z}$, then $A(S)>0$. For example, if

$$
S=\{(0,1),(0,2),(2,0),(3,1)\}
$$

then the terms in $A(S)$ are $12,12,12,12,4,4,0,0,0,0,-1,-1,-2,-2,-4,-4$.

