Putnam Practice Problems

Practice Set 6

1. Suppose that $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are three points on the parabola $y^{2}=a x$ which have the property that the three lines orthogonal to the parabola at these points are concurrent. Prove that $y_{1}+y_{2}+y_{3}=0$.
2. (a) In a triangle $A B C$, points D and E belong to the sides $B C$ and $A C$ such that

$$
\frac{B D}{D C}=3 \quad \frac{A E}{E C}=\frac{3}{2}
$$

Let P denote the intersection point of $A D$ and $B E$. Find the ratio between the lengths of $B P$ and $P E$.
(b) In a triangle $A B C$, points E and F belong to the sides $A C$ and $A B$ such that

$$
\frac{A E}{E C}=4 \quad \frac{A F}{F B}=1
$$

Suppose D is a point that belongs to $B C$ and Q denotes the intersection point of $A D$ and $E F$. If $\frac{A G}{G D}=\frac{3}{2}$, then find the ratio between the lengths of $B D$ and $D C$.
3. Given a point P on the circumference of a circle C and the vertices A_{1}, A_{2}, \ldots, A_{n} of a regular polygon inscribed in C prove that

$$
P A_{1}^{4}+P A_{2}^{4}+\cdots+P A_{n}^{4}
$$

is independent of the position of P.
4. Find all maps $u: \mathbb{R} \rightarrow \mathbb{R}^{3}$ satisfying the differential function

$$
u(t) \times u^{\prime}(t)=v(t)
$$

where $v: \mathbb{R} \rightarrow \mathbb{R}^{3}$ is a twice differentiable map such that $v(t)$ and $v^{\prime}(t)$ are never zero or parallel.
5. Let P be a point on the hyperbola $x y=4$, and Q a point on the ellipse $x^{2}+4 y^{2}=4$. Prove that the distance from P to Q is greater than 1 .
6. Prove that the four lines through the centroids of the four faces of a tetrahedron perpendicular to those faces are concurrent if and only if the four altitudes of the tetrahedron are concurrent.
7. Let $A B C D E F$ be a hexagon inscribed in a circle of radius r. Show that if $A B=C D=E F=r$, then the midpoints of $B C, D E$, and $F A$ are the vertices of an equilateral triangle.
8. Let G be a group, with operation $*$. Suppose that
(i) G is a subset of \mathbb{R}^{3} (but * need not be related to addition of vectors);
(ii) For each $\mathbf{a}, \mathbf{b} \in G$, either $\mathbf{a} \times \mathbf{b}=\mathbf{a} * \mathbf{b}$ or $\mathbf{a} \times \mathbf{b}=0$ (or both), where \times is the usual cross product in \mathbb{R}^{3}.

Prove that $\mathbf{a} \times \mathbf{b}=0$ for all $\mathbf{a}, \mathbf{b} \in G$.
9. For $m \geq 3$, a list of $\binom{m}{3}$ real numbers $a_{i j k}(1 \leq i<j<k \leq m)$ is said to be area definite for \mathbb{R}^{n} if the inequality

$$
\sum_{1 \leq i<j<k \leq m} a_{i j k} \cdot \operatorname{Area}\left(\Delta A_{i} A_{j} A_{k}\right) \geq 0
$$

holds for every choice of m points A_{1}, \ldots, A_{m} in \mathbb{R}^{n}. For example, the list of four numbers $a_{123}=a_{124}=a_{134}=1, a_{234}=-1$ is area definite for \mathbb{R}^{2}. Prove that if a list of $\binom{m}{3}$ numbers is area definite for \mathbb{R}^{2}, then it is area definite for \mathbb{R}^{3}.
10. Let $A B C$ be a triangle. The triangles $P A B$ and $Q A C$ are constructed outside of the triangle $A B C$ such that $A P=A B, A Q=A C$, and $\angle B A P=\angle C A Q$. The segments $B Q$ and $C P$ meet at R. Let O be the circumcenter of the triangle $B C R$. Prove that $A O$ and $P Q$ are orthogonal.

