Putnam practice #7

(note: This is an original VTRMC exam)

- 1. Find all integers *n* for which $n^4 + 6n^3 + 11n^2 + 3n + 31$ is a perfect square.
- 2. The planar diagram below, with equilateral triangles and regular hexagons, sides length 2cm., is folded along the dashed edges of the polygons, to create a closed surface in three dimensional Euclidean spaces. Edges on the periphery of the planar diagram are identified (or glued) with precisely one other edge on the periphery in a natural way. Thus for example, BA will be joined to QP and AC will be joined to DC. Find the volume of the three-dimensional region enclosed by the resulting surface.

3. Let $(a_i)_{1 \le i \le 2015}$ be a sequence consisting of 2015 integers, and let $(k_i)_{1 \le i \le 2015}$ be a sequence of 2015 positive integers (positive integer excludes 0). Let

$$A = \begin{pmatrix} a_1^{k_1} & a_1^{k_2} & \cdots & a_1^{k_{2015}} \\ a_2^{k_1} & a_2^{k_2} & \cdots & a_2^{k_{2015}} \\ \vdots & \vdots & \cdots & \vdots \\ a_{2015}^{k_1} & a_{2015}^{k_2} & \cdots & a_{2015}^{k_{2015}} \end{pmatrix}.$$

Prove that 2015! divides det*A*.

- 4. Consider the harmonic series $\sum_{n\geq 1} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} \cdots$. Prove that every positive rational number can be obtained as an *unordered* partial sum of this series. (An unordered partial sum may skip some of the terms $\frac{1}{k}$.)
- 5. Evaluate $\int_0^\infty \frac{\arctan(\pi x) \arctan(x)}{x} dx$ (where $0 \le \arctan(x) < \pi/2$ for $0 \le x < \infty$).
- 6. Let $(a_1, b_1), \ldots, (a_n, b_n)$ be *n* points in \mathbb{R}^2 (where \mathbb{R} denotes the real numbers), and let $\varepsilon > 0$ be a positive number. Can we find a real-valued function f(x, y) that satisfies the following three conditions?
 - (a) f(0,0) = 1;
 - (b) $f(x,y) \neq 0$ for only finitely many $(x,y) \in \mathbb{R}^2$; (c) $\sum_{r=1}^{r=n} |f(x+a_r,y+b_r) - f(x,y)| < \varepsilon$ for every $(x,y) \in \mathbb{R}^2$.

Justify your answer.

- 7. Let *n* be a positive integer and let x_1, \ldots, x_n be *n* nonzero points in \mathbb{R}^2 . Suppose $\langle x_i, x_j \rangle$ (scalar or dot product) is a rational number for all *i*, *j* ($1 \le i, j \le n$). Let *S* denote all points of \mathbb{R}^2 of the form $\sum_{i=1}^{i=n} a_i x_i$ where the a_i are integers. A closed disk of radius *R* and center *P* is the set of points at distance at most *R* from *P* (includes the points distance *R* from *P*). Prove that there exists a positive number *R* and closed disks D_1, D_2, \ldots of radius *R* such that
 - (a) Each disk contains exactly two points of *S*;
 - (b) Every point of *S* lies in at least one disk;
 - (c) Two distinct disks intersect in at most one point.