Putnam practice \#7

(note: This is an original VTRMC exam)

1. Find all integers n for which $n^{4}+6 n^{3}+11 n^{2}+3 n+31$ is a perfect square.
2. The planar diagram below, with equilateral triangles and regular hexagons, sides length 2 cm ., is folded along the dashed edges of the polygons, to create a closed surface in three dimensional Euclidean spaces. Edges on the periphery of the planar diagram are identified (or glued) with precisely one other edge on the periphery in a natural way. Thus for example, BA will be joined to QP and AC will be joined to DC. Find the volume of the three-dimensional region enclosed by the resulting surface.

3. Let $\left(a_{i}\right)_{1 \leq i \leq 2015}$ be a sequence consisting of 2015 integers, and let $\left(k_{i}\right)_{1 \leq i \leq 2015}$ be a sequence of 2015 positive integers (positive integer excludes 0). Let

$$
A=\left(\begin{array}{cccc}
a_{1}^{k_{1}} & a_{1}^{k_{2}} & \cdots & a_{1}^{k_{2015}} \\
a_{2}^{k_{1}} & a_{2}^{k_{2}} & \cdots & a_{2}^{k_{2015}} \\
\vdots & \vdots & \cdots & \vdots \\
a_{2015}^{k_{1}} & a_{2015}^{k_{2}} & \cdots & a_{2015}^{k_{2015}}
\end{array}\right) .
$$

Prove that 2015 ! divides $\operatorname{det} A$.
4. Consider the harmonic series $\sum_{n \geq 1} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3} \cdots$. Prove that every positive rational number can be obtained as an unordered partial sum of this series. (An unordered partial sum may skip some of the terms $\frac{1}{k}$.)
5. Evaluate $\int_{0}^{\infty} \frac{\arctan (\pi x)-\arctan (x)}{x} d x \quad$ (where $0 \leq \arctan (x)<\pi / 2$ for $0 \leq x<\infty)$.
6. Let $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ be n points in \mathbb{R}^{2} (where \mathbb{R} denotes the real numbers), and let $\varepsilon>0$ be a positive number. Can we find a real-valued function $f(x, y)$ that satisfies the following three conditions?
(a) $f(0,0)=1$;
(b) $f(x, y) \neq 0$ for only finitely many $(x, y) \in \mathbb{R}^{2}$;
(c) $\sum_{r=1}^{r=n}\left|f\left(x+a_{r}, y+b_{r}\right)-f(x, y)\right|<\varepsilon$ for every $(x, y) \in \mathbb{R}^{2}$.

Justify your answer.
7. Let n be a positive integer and let x_{1}, \ldots, x_{n} be n nonzero points in \mathbb{R}^{2}. Suppose $\left\langle x_{i}, x_{j}\right\rangle$ (scalar or dot product) is a rational number for all $i, j(1 \leq$ $i, j \leq n)$. Let S denote all points of \mathbb{R}^{2} of the form $\sum_{i=1}^{i=n} a_{i} x_{i}$ where the a_{i} are integers. A closed disk of radius R and center P is the set of points at distance at most R from P (includes the points distance R from P). Prove that there exists a positive number R and closed disks D_{1}, D_{2}, \ldots of radius R such that
(a) Each disk contains exactly two points of S;
(b) Every point of S lies in at least one disk;
(c) Two distinct disks intersect in at most one point.

