Practice Set 8

1. Suppose G is a group and $a, b \in G$ satisfy the relations:

$$aba^{-1} = b^{-1}, \qquad bab^{-1} = a^{-1}.$$

Prove that $a^4 = b^4 = 1$.

2. Let G be a set with an associative binary operation * such that it satisfies the relation:

$$a \ast a \ast b = b = b \ast a \ast a$$

for all $a, b \in G$. Show that (G, *) is a commutative group.

- 3. Let R be a ring with identity and a be an element of R such that there is a unique b satisfying ab = 1. Prove that ba = 1.
- 4. Suppose that H is a subgroup of a group G with size h and $a \in G$ such that for any $h \in H$ we have $(ah)^3 = 1$. Prove that the set of elements of the form:

$$ah_1ah_2\ldots ah_n$$

for $h_i \in H$ and n a positive integer consist of at most $3h^2$ elements.

- 5. Let S be the smallest set of rational functions containing f(x, y) = x and g(x, y) = y and closed under subtraction and taking reciprocals. Show that S does not contain the nonzero constant functions.
- 6. Let G be a group with the following properties:
 - (i) G has no element of order 2;
 - (ii) $(xy)^2 = (yx)^2$, for all $x, y \in G$.

Prove that G is Abelian.

- 7. Let G be a finite multiplicative group of matrices with complex entries. If M is the sum of the elements of G show that det(M) is an integer.
- 8. Let x and y be elements in a ring with identity and n a positive integer. Prove that if $1 (xy)^n$ is invertible, then so is $1 (yx)^n$.
- 9. Let * be a binary operation on the set \mathbb{Q} of rational numbers that is associative and commutative and satisfies 0 * 0 = 0 and (a + c) * (b + c) = a * b + c for all $a, b, c \in \mathbb{Q}$. Prove that either $a * b = \max(a, b)$ for all $a, b \in \mathbb{Q}$, or $a * b = \min(a, b)$ for all $a, b \in \mathbb{Q}$.

10. Suppose that G is a finite group generated by the two elements g and h, where the order of g is odd. Show that every element of G can be written in the form

$$g^{m_1}h^{n_1}g^{m_2}h^{n_2}\cdots g^{m_r}h^{n_r}$$

with $1 \leq r \leq |G|$ and $m_1, n_1, m_2, n_2, \ldots, m_r, n_r \in \{-1, 1\}$. (Here |G| is the number of elements of G.)

11. Let m and n be positive integers with gcd(m, n) = 1, and let

$$a_k = \left\lfloor \frac{mk}{n} \right\rfloor - \left\lfloor \frac{m(k-1)}{n} \right\rfloor$$

for k = 1, 2, ..., n. Suppose that g and h are elements in a group G and that

$$gh^{a_1}gh^{a_2}\cdots gh^{a_n}=e,$$

where e is the identity element. Show that gh = hg. (As usual, $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x.)

- 12. Let G be a group, with operation *. Suppose that
 - (i) G is a subset of \mathbb{R}^3 (but * need not be related to addition of vectors);
 - (ii) For each $\mathbf{a}, \mathbf{b} \in G$, either $\mathbf{a} \times \mathbf{b} = \mathbf{a} \ast \mathbf{b}$ or $\mathbf{a} \times \mathbf{b} = 0$ (or both), where \times is the usual cross product in \mathbb{R}^3 .

Prove that $\mathbf{a} \times \mathbf{b} = 0$ for all $\mathbf{a}, \mathbf{b} \in G$.