Putnam Practice Problems

Practice Set 8

1. Suppose G is a group and $a, b \in G$ satisfy the relations:

$$
a b a^{-1}=b^{-1}, \quad \quad b a b^{-1}=a^{-1}
$$

Prove that $a^{4}=b^{4}=1$.
2. Let G be a set with an associative binary operation $*$ such that it satisfies the relation:

$$
a * a * b=b=b * a * a
$$

for all $a, b \in G$. Show that $(G, *)$ is a commutative group.
3. Let R be a ring with identity and a be an element of R such that there is a unique b satisfying $a b=1$. Prove that $b a=1$.
4. Suppose that H is a subgroup of a group G with size h and $a \in G$ such that for any $h \in H$ we have $(a h)^{3}=1$. Prove that the set of elements of the form:

$$
a h_{1} a h_{2} \ldots a h_{n}
$$

for $h_{i} \in H$ and n a positive integer consist of at most $3 h^{2}$ elements.
5. Let S be the smallest set of rational functions containing $f(x, y)=x$ and $g(x, y)=y$ and closed under subtraction and taking reciprocals. Show that S does not contain the nonzero constant functions.
6. Let G be a group with the following properties:
(i) G has no element of order 2;
(ii) $(x y)^{2}=(y x)^{2}$, for all $x, y \in G$.

Prove that G is Abelian.
7. Let G be a finite multiplicative group of matrices with complex entries. If M is the sum of the elements of G show that $\operatorname{det}(M)$ is an integer.
8. Let x and y be elements in a ring with identity and n a positive integer. Prove that if $1-(x y)^{n}$ is invertible, then so is $1-(y x)^{n}$.

9 . Let $*$ be a binary operation on the set \mathbb{Q} of rational numbers that is associative and commutative and satisfies $0 * 0=0$ and $(a+c) *(b+c)=a * b+c$ for all $a, b, c \in \mathbb{Q}$. Prove that either $a * b=\max (a, b)$ for all $a, b \in \mathbb{Q}$, or $a * b=\min (a, b)$ for all $a, b \in \mathbb{Q}$.
10. Suppose that G is a finite group generated by the two elements g and h, where the order of g is odd. Show that every element of G can be written in the form

$$
g^{m_{1}} h^{n_{1}} g^{m_{2}} h^{n_{2}} \cdots g^{m_{r}} h^{n_{r}}
$$

with $1 \leq r \leq|G|$ and $m_{1}, n_{1}, m_{2}, n_{2}, \ldots, m_{r}, n_{r} \in\{-1,1\}$. (Here $|G|$ is the number of elements of G.)
11. Let m and n be positive integers with $\operatorname{gcd}(m, n)=1$, and let

$$
a_{k}=\left\lfloor\frac{m k}{n}\right\rfloor-\left\lfloor\frac{m(k-1)}{n}\right\rfloor
$$

for $k=1,2, \ldots, n$. Suppose that g and h are elements in a group G and that

$$
g h^{a_{1}} g h^{a_{2}} \cdots g h^{a_{n}}=e
$$

where e is the identity element. Show that $g h=h g$. (As usual, $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x.)
12. Let G be a group, with operation *. Suppose that
(i) G is a subset of \mathbb{R}^{3} (but $*$ need not be related to addition of vectors);
(ii) For each $\mathbf{a}, \mathbf{b} \in G$, either $\mathbf{a} \times \mathbf{b}=\mathbf{a} * \mathbf{b}$ or $\mathbf{a} \times \mathbf{b}=0$ (or both), where \times is the usual cross product in \mathbb{R}^{3}.

Prove that $\mathbf{a} \times \mathbf{b}=0$ for all $\mathbf{a}, \mathbf{b} \in G$.

