Putnam practice session 3
Washington University in St. Louis
Fri, October 9, 2020

Inequalities

Before working on these problems, familiarize yourself with basic inequalities, in particular the AM-GM-HM inequality (and its weighted versions!), as well as Jensen's and the Cauchy-Schwarz, Triangle, and Bernoulli inequalities.

1. For positive numbers a, b, c with $a b c=1$, show that

$$
\left(a^{2} b+b^{2} c+c^{2} a\right)\left(a b^{2}+b c^{2}+c a^{2}\right) \geq 9
$$

2. For positive numbers x_{1}, \ldots, x_{n}, what is the minimum value of

$$
\frac{x_{1}}{\sum_{i} x_{i}-x_{1}}+\ldots+\frac{x_{n}}{\sum_{i} x_{i}-x_{n}} ?
$$

3. (Polish Math Olympiad) For a given integer $n \geq 1$, compute the minimum value of the sum

$$
x_{1}+\frac{x_{2}^{2}}{2}+\frac{x_{3}^{3}}{3}+\ldots+\frac{x_{n}^{n}}{n},
$$

where the x_{1}, \ldots, x_{n} are positive numbers satisfying

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}=n .
$$

4. For a polynomial $P(x)$ with positive coefficients, show that

$$
P\left(\frac{1}{x}\right) \geq \frac{1}{P(x)} .
$$

holds for all $x>0$ if holds for $x=1$.
5. (Putnam) Find all positive integers n, a_{1}, \ldots, a_{n} such that $\sum_{k=1}^{n} a_{k}=$ $5 n-4$ and $\sum_{k=1}^{n} a_{k}^{-1}=1$.
6. (IMO) For positive a, b, c with $a b c=1$, show that

$$
\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)} \geq \frac{3}{2} .
$$

7. (Putnam) Let $x_{i} \in(0, \pi), i=1,2, \ldots n$, and let x be their arithmetic mean. Show that

$$
\prod_{i=1}^{n} \frac{\sin x_{i}}{x_{i}} \leq\left(\frac{\sin x}{x}\right)^{n}
$$

8. (A named inequality) Let $a_{n}>0$ with $\sum_{n} a_{n}$ convergent. Show that

$$
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty} a_{n}
$$

9. (Another named inequality) For $p>1$ and $a_{1}, a_{2}, \ldots, a_{n}$ positive, show that

$$
\sum_{k=1}^{n}\left(\frac{a_{1}+a_{2}+\ldots+a_{k}}{k}\right)^{p}<\left(\frac{p}{p-1}\right)^{p} \sum_{k=1}^{n} a_{k}^{p}
$$

10. (Putnam) Let $p(z)$ be a polynomial of degree n with real coefficients whose roots all lie inside a circular disk of radius R in the complex plane. Show that for any real k, there is a circular disk of radius $R+|k|$ in the complex plane containing all the zeros of the polynomial $n p(z)-k p^{\prime}(z)$. Here, $p^{\prime}(z)$ is the derivative of $p(z)$.
11. (French Math Olympiad) Let x, y be real and $0<x, y<1$. Show that $x^{y}+y^{x}>1$.
12. (Putnam) Let f be a continuous function on the unit square. Show that

$$
\begin{array}{r}
\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right)^{2} d y+\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right)^{2} d x \leq \\
\left(\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y\right)^{2}+\int_{0}^{1} \int_{0}^{1} f(x, y)^{2} d x d y
\end{array}
$$

