Limits and Series

Room 1: 1-4; Room 2: 5-7, Room 3: 8-10

1. (Putnam) Suppose that a sequence of positive numbers $a_{1}, a_{2}, a_{3} \ldots$ satisfies $a_{n} \leq a_{2 n}+a_{2 n+1}$ for all $n \geq 1$. Show that the series $\sum_{n=1}^{\infty} a_{n}$ diverges.
2. Calculate $\sum_{n=1}^{N} \frac{n}{(n+1)!}$.
3. Evaluate the following: $\sum_{n=1}^{\infty} \frac{2 n+3}{n(n+1)^{2}(n+2)^{2}(n+3)}$

Hint (highlight and/or copy + paste to make visible): \qquad
4. (Putnam) For given positive integer n, let $\langle n\rangle$ denote the integer closest to \sqrt{n}. Evaluate:

$$
\sum_{n=1}^{\infty} \frac{2^{\langle n\rangle}+2^{-\langle n\rangle}}{2^{n}}
$$

5. Show that $\lim _{n \rightarrow \infty} \sum_{k=n}^{2 n} \frac{1}{k}$ exists and determine its value.
6. (Putnam) Let r, s, t be non-negative integers with $r+s \leq t$. Prove that

$$
\sum_{k=0}^{s} \frac{\binom{s}{k}}{\binom{t}{r+k}}=\frac{t+1}{(t+1-s)\binom{t-s}{r}}
$$

where $\binom{a}{b}$ is a binomial coefficient.
7. For real numbers a, b, prove that the sequence defined by the recurrence $x_{1}>0, x_{n+1}=\sqrt{a+b x_{n}}$ for $n \geq 1$, converges and determine its limit.
8. Calculate $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{1+3 n}$.
9. For real x determine $\prod_{n=1}^{\infty} \frac{1+2 \cos \frac{2 x}{3^{n}}}{3}$.
10. Evaluate

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^{2} n+n^{2} m+2 m n}
$$

