11. If an equation of the plane is known, it can be written as \(ax + by + cz + d = 0 \). A normal vector, which is perpendicular to the plane, is \((a, b, c)\) (or any scalar multiple of \((a, b, c)\)). If an equation is not known, we can use points on the plane to find two non-parallel vectors which lie in the plane. The cross product of these vectors is a vector perpendicular to the plane.

12. The angle between two intersecting planes is defined as the acute angle between their normal vectors. We can find this angle using Corollary 12.3.6.

13. See (1), (2), and (3) in Section 12.5.

14. See (5), (6), and (7) in Section 12.5.

15. (a) Two (nonzero) vectors are parallel if and only if one is a scalar multiple of the other. In addition, two nonzero vectors are parallel if and only if their cross product is 0.

(b) Two vectors are perpendicular if and only if their dot product is 0.

(c) Two planes are parallel if and only if their normal vectors are parallel.

16. (a) Determine the vectors \(\overrightarrow{PQ} = (a_1, a_2, a_3) \) and \(\overrightarrow{PR} = (b_1, b_2, b_3) \). If there is a scalar \(t \) such that \(\langle a_1, a_2, a_3 \rangle = t \langle b_1, b_2, b_3 \rangle \), then the vectors are parallel and the points must all lie on the same line.

Alternatively, if \(\overrightarrow{PQ} \times \overrightarrow{PR} = 0 \), then \(\overrightarrow{PQ} \) and \(\overrightarrow{PR} \) are parallel, so \(P, Q, \) and \(R \) are collinear.

Thirdly, an algebraic method is to determine an equation of the line joining two of the points, and then check whether or not the third point satisfies this equation.

(b) Find the vectors \(\overrightarrow{PQ} = a, \overrightarrow{PR} = b, \overrightarrow{PS} = c \). \(a \times b \) is normal to the plane formed by \(P, Q, \) and \(R \), and so \(S \) lies on this plane if \(a \times b \) and \(c \) are orthogonal, that is, if \((a \times b) \cdot c = 0 \). (Or use the reasoning in Example 5 in Section 12.4.) Alternatively, find an equation for the plane determined by three of the points and check whether or not the fourth point satisfies this equation.

17. (a) See Exercise 12.4.45.

(b) See Example 8 in Section 12.5.

(c) See Example 10 in Section 12.5.

18. The traces of a surface are the curves of intersection of the surface with planes parallel to the coordinate planes. We can find the trace in the plane \(x = k \) (parallel to the \(yz \)-plane) by setting \(x = k \) and determining the curve represented by the resulting equation. Traces in the planes \(y = k \) (parallel to the \(xz \)-plane) and \(z = k \) (parallel to the \(xy \)-plane) are found similarly.

19. See Table 1 in Section 12.6.

TRUE-FALSE QUIZ

1. This is false, as the dot product of two vectors is a scalar, not a vector.

2. False. For example, if \(u = i \) and \(v = -i \) then \(|u + v| = |0| = 0 \) but \(|u| + |v| = 1 + 1 = 2 \).
3. False. For example, if \(\mathbf{u} = \mathbf{i} \) and \(\mathbf{v} = \mathbf{j} \) then \(\mathbf{u} \cdot \mathbf{v} = |0| = 0 \) but \(|\mathbf{u}| |\mathbf{v}| = 1 \cdot 1 = 1 \). In fact, by Theorem 12.2.3,
\[
|\mathbf{u} \cdot \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \cos \theta.
\]

4. False. For example, \(|\mathbf{i} \times \mathbf{j}| = |0| = 0 \) (see Example 12.4.2) but \(|\mathbf{i}| |\mathbf{j}| = 1 \cdot 1 = 1 \). In fact, by Theorem 12.4.9,
\[
|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta.
\]

5. True, by Theorem 12.3.2, property 2.

6. False. Property 1 of Theorem 12.4.11 says that \(\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u} \).

7. True. If \(\theta \) is the angle between \(\mathbf{u} \) and \(\mathbf{v} \), then by Theorem 12.4.9,
\[
|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta = |\mathbf{v}| |\mathbf{u}| \sin \theta = |\mathbf{v} \times \mathbf{u}|.
\]
(Or, by Theorem 12.4.11, \(|\mathbf{u} \times \mathbf{v}| = |\mathbf{v} \times \mathbf{u}| = |\mathbf{v} \times \mathbf{u}| = |\mathbf{v} \times \mathbf{u}|.)

8. This is true by Theorem 12.3.2, property 4.

9. Theorem 12.4.11, property 2 tells us that this is true.

10. This is true by Theorem 12.4.11, property 4.

11. This is true by Theorem 12.4.11, property 5.

12. In general, this assertion is false; a counterexample is \(\mathbf{i} \times (\mathbf{i} \times \mathbf{j}) \neq (\mathbf{i} \times \mathbf{j}) \times \mathbf{i} \). (See the paragraph preceding Theorem 12.4.11.)

13. This is true because \(\mathbf{u} \times \mathbf{v} \) is orthogonal to \(\mathbf{u} \) (see Theorem 12.4.8), and the dot product of two orthogonal vectors is 0.

14. \[
(\mathbf{u} + \mathbf{v}) \times \mathbf{v} = \mathbf{u} \times \mathbf{v} + \mathbf{v} \times \mathbf{v}
\]
(by Theorem 12.4.11, property 4)

\[
= \mathbf{u} \times \mathbf{v} + \mathbf{0}
\]
(by Example 12.4.2)

\[
= \mathbf{u} \times \mathbf{v}, \text{ so this is true.}
\]

15. This is false. A normal vector to the plane is \(\mathbf{n} = (0, -2, 4) \). Because \(\langle 3, -1, 2 \rangle = \frac{1}{2} \mathbf{n} \), the vector is parallel to \(\mathbf{n} \) and hence perpendicular to the plane.

16. This is false, because according to Equation 12.5.8, \(ax + by + cz + d = 0 \) is the general equation of a plane.

17. This is false. In \(\mathbb{R}^2 \), \(x^2 + y^2 = 1 \) represents a circle, but \(\{ (x, y, z) \mid x^2 + y^2 = 1 \} \) represents a three-dimensional surface, namely, a circular cylinder with axis the \(z \)-axis.

18. This is false. In \(\mathbb{R}^3 \) the graph of \(y = x^2 \) is a parabolic cylinder (see Example 12.6.1). A paraboloid has an equation such as \(z = x^2 + y^2 \).

19. False. For example, \(\mathbf{i} \cdot \mathbf{j} = 0 \) but \(\mathbf{i} \neq 0 \) and \(\mathbf{j} \neq 0 \).

20. This is false. By Corollary 12.4.10, \(\mathbf{u} \times \mathbf{v} = \mathbf{0} \) for any nonzero parallel vectors \(\mathbf{u}, \mathbf{v} \). For instance, \(\mathbf{i} \times \mathbf{i} = \mathbf{0} \).

21. This is true. If \(\mathbf{u} \) and \(\mathbf{v} \) are both nonzero, then by (7) in Section 12.3, \(\mathbf{u} \cdot \mathbf{v} = 0 \) implies that \(\mathbf{u} \) and \(\mathbf{v} \) are orthogonal. But \(\mathbf{u} \times \mathbf{v} = \mathbf{0} \) implies that \(\mathbf{u} \) and \(\mathbf{v} \) are parallel (see Corollary 12.4.10). Two nonzero vectors can't be both parallel and orthogonal, so at least one of \(\mathbf{u}, \mathbf{v} \) must be \(\mathbf{0} \).

22. This is true. We know \(\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta \) where \(|\mathbf{u}| \geq 0, |\mathbf{v}| \geq 0, \) and \(|\cos \theta| \leq 1 \), so \(|\mathbf{u} \cdot \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| |\cos \theta| \leq |\mathbf{u}| |\mathbf{v}|. \)
EXERCISES

1. (a) The radius of the sphere is the distance between the points \((-1, 2, 1)\) and \((6, -2, 3)\), namely,
 \[\sqrt{(6 - (-1))^2 + (-2 - 2)^2 + (3 - 1)^2} = \sqrt{69}.\] By the formula for an equation of a sphere (see page 813 [ET 789]), an equation of the sphere with center \((-1, 2, 1)\) and radius \(\sqrt{69}\) is \((x + 1)^2 + (y - 2)^2 + (z - 1)^2 = 69.\)

(b) The intersection of this sphere with the \(yz\)-plane is the set of points on the sphere whose \(x\)-coordinate is 0. Putting \(x = 0\) into the equation, we have \((y - 2)^2 + (z - 1)^2 = 68, x = 0\) which represents a circle in the \(yz\)-plane with center \((0, 2, 1)\) and radius \(\sqrt{68}\).

(c) Completing squares gives \((x - 4)^2 + (y + 1)^2 + (z + 3)^2 = -1 + 16 + 1 + 9 = 25.\) Thus the sphere is centered at \((4, -1, -3)\) and has radius 5.

2. (a)

(b)

(c)

(d)

3. \(\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos 45^\circ = (2)(3)\frac{\sqrt{2}}{2} = 3 \sqrt{2}.\) By the right-hand rule, \(\mathbf{u} \times \mathbf{v}\) is directed out of the page.

4. (a) \(2\mathbf{a} + 3\mathbf{b} = 21 + 2j - 4k + 9i - 6j + 3k = 11i - 4j - k\)

(b) \(||\mathbf{b}|| = \sqrt{9 + 4 + 1} = \sqrt{14}\)

(c) \(\mathbf{a} \cdot \mathbf{b} = (1)(3) + (1)(-2) + (-2)(1) = -1\)

(d) \(\mathbf{a} \times \mathbf{b} = \begin{vmatrix} i & j & k \\ 1 & 1 & -2 \\ 3 & 2 & 1 \end{vmatrix} = (1 - 4)i - (1 + 6)j + (-2 - 3)k = -3i - 7j - 5k\)

(e) \(\mathbf{b} \times \mathbf{c} = \begin{vmatrix} i & j & k \\ 3 & -2 & 1 \\ 0 & 1 & -5 \end{vmatrix} = 9i + 15j + 3k, \quad ||\mathbf{b} \times \mathbf{c}|| = 3 \sqrt{9 + 25 + 1} = 3 \sqrt{35}\)
(f) \(\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} 1 & 1 & -2 \\ 3 & -2 & 1 \\ 0 & 1 & -5 \end{vmatrix} = -2 \begin{vmatrix} 1 & -2 \\ 0 & -5 \end{vmatrix} - 3 \begin{vmatrix} 1 & -2 \\ 0 & 1 \end{vmatrix} - 2 \begin{vmatrix} 3 & -2 \\ 0 & 1 \end{vmatrix} = 9 + 15 - 6 = 18 \)

(g) \(\mathbf{c} \times \mathbf{c} = \mathbf{0} \) for any \(\mathbf{c} \).

(h) From part (e),

\[
\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \times (9 \mathbf{i} + 15 \mathbf{j} + 3 \mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -2 \\ 9 & 15 & 3 \end{vmatrix} = (3 + 30) \mathbf{i} - (3 + 18) \mathbf{j} + (15 - 9) \mathbf{k} = 33 \mathbf{i} - 21 \mathbf{j} + 6 \mathbf{k}
\]

(i) The scalar projection is \(\text{comp}_a \mathbf{b} = |\mathbf{b}| \cos \theta = \mathbf{a} \cdot \mathbf{b} / |\mathbf{a}| = -\frac{2}{\sqrt{6}} \).

(j) The vector projection is \(\text{proj}_a \mathbf{b} = -\frac{1}{\sqrt{6}} \left(\frac{\mathbf{a}}{|\mathbf{a}|} \right) = -\frac{1}{6} (i + j - 2 \mathbf{k}) \).

(k) \(\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{-1}{\sqrt{6} \sqrt{14}} = -\frac{1}{2 \sqrt{21}} \) and \(\theta = \cos^{-1} \left(\frac{-1}{2 \sqrt{21}} \right) \approx 96^\circ \).

5. For the two vectors to be orthogonal, we need \(\langle 3, 2, x \rangle \cdot (2x, 4, x) = 0 \) \(\iff \) \((3)(2x) + (2)(4) + (x)(x) = 0 \) \(\iff \) \(x^2 + 6x + 8 = 0 \) \(\iff \) \((x + 2)(x + 4) = 0 \) \(\iff \) \(x = -2 \) or \(x = -4 \).

6. We know that the cross product of two vectors is orthogonal to both. So we calculate

\[
(\mathbf{j} + 2 \mathbf{k}) \times (\mathbf{i} - 2 \mathbf{j} + 3 \mathbf{k}) = [3 - (-4)] \mathbf{i} - (0 - 2) \mathbf{j} + (0 - 1) \mathbf{k} = 7 \mathbf{i} + 2 \mathbf{j} - \mathbf{k}
\]

Then two unit vectors orthogonal to both given vectors are

\[
\pm \frac{7 \mathbf{i} + 2 \mathbf{j} - \mathbf{k}}{\sqrt{7^2 + 2^2 + (-1)^2}} = \pm \frac{1}{3 \sqrt{6}} (7 \mathbf{i} + 2 \mathbf{j} - \mathbf{k}),
\]

that is, \(\frac{7}{3 \sqrt{6}} \mathbf{i} + \frac{2}{3 \sqrt{6}} \mathbf{j} - \frac{1}{3 \sqrt{6}} \mathbf{k} \) and \(-\frac{7}{3 \sqrt{6}} \mathbf{i} - \frac{2}{3 \sqrt{6}} \mathbf{j} + \frac{1}{3 \sqrt{6}} \mathbf{k} \).

7. (a) \(\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{u} \cdot (\mathbf{v} \times (\mathbf{v} \times \mathbf{w})) = 2 \)

(b) \(\mathbf{u} \cdot (\mathbf{w} \times \mathbf{v}) = \mathbf{u} \cdot [-(\mathbf{v} \times \mathbf{w})] = -\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = -2 \)

(c) \(\mathbf{v} \cdot (\mathbf{u} \times \mathbf{w}) = (\mathbf{v} \times \mathbf{u}) \cdot \mathbf{w} = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = -2 \)

(d) \(\mathbf{u} \cdot (\mathbf{v} \times \mathbf{v}) = \mathbf{u} \cdot (\mathbf{v} \times \mathbf{v}) = \mathbf{u} \cdot 0 = 0 \)

8. \((\mathbf{a} \times \mathbf{b}) \cdot [(\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a})] = (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{a} \cdot [(\mathbf{b} \times \mathbf{c}) \cdot \mathbf{c}] - (\mathbf{b} \cdot \mathbf{c}) \cdot \mathbf{a}) \)

[by Property 6 of Theorem 12.4.11]

\[
= (\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})) [(\mathbf{b} \cdot \mathbf{c}) \cdot \mathbf{a}] = [(\mathbf{b} \cdot \mathbf{c}) \cdot \mathbf{a}] (\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}
\]

\[
= [\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})] [\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})] = (\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}))^2
\]

8. For simplicity, consider a unit cube positioned with its back left corner at the origin. Vector representations of the diagonals joining the points \((0, 0, 0)\) to \((1, 1, 1)\) and \((1, 0, 0)\) to \((0, 1, 1)\) are \((1, 1, 1)\) and \((-1, 1, 1)\). Let \(\theta \) be the angle between these two vectors. \(\langle 1, 1, 1 \rangle \cdot \langle -1, 1, 1 \rangle = -1 + 1 + 1 = 1 = |\langle 1, 1, 1 \rangle| |\langle -1, 1, 1 \rangle| \cos \theta = \cos \theta = \cos \frac{\pi}{3} \Rightarrow \theta = \cos^{-1} \left(\frac{1}{2} \right) \approx 71^\circ \).
10. \(\overrightarrow{AB} = (1, 3, -1), \overrightarrow{AC} = (-2, 1, 3) \) and \(\overrightarrow{AD} = (-1, 3, 1) \). By Equation 12.4.13,

\[
\overrightarrow{AB} \cdot \left(\overrightarrow{AC} \times \overrightarrow{AD} \right) = \begin{vmatrix} 1 & 3 & -1 \\ -2 & 1 & 3 \\ -1 & 3 & 1 \end{vmatrix} = 1 \begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} - (-2) \begin{vmatrix} 3 & 1 \\ -1 & 3 \end{vmatrix} + (-1) \begin{vmatrix} -2 & 3 \\ 3 & 1 \end{vmatrix} = -8 + 6 = -6.
\]

The volume is \(|\overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD})| = 6 \) cubic units.

11. \(\overrightarrow{AB} = (1, 0, -1), \overrightarrow{AC} = (0, 4, 3) \), so

(a) a vector perpendicular to the plane is \(\overrightarrow{AB} \times \overrightarrow{AC} = (0 + 4, -(3 + 0), 4 - 0) = (4, -3, 4) \).

(b) \(\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \sqrt{16 + 9 + 49} = \frac{\sqrt{74}}{2} \).

12. \(\mathbf{D} = 4i + 3j + 6k \), \(\mathbf{W} = \mathbf{F} \cdot \mathbf{D} = 12 + 15 + 60 = 87 \).

13. Let \(F_1 \) be the magnitude of the force directed 20° away from the direction of shore, and let \(F_2 \) be the magnitude of the other force. Separating these forces into components parallel to the direction of the resultant force and perpendicular to it gives

\[F_1 \cos 20° + F_2 \cos 30° = 255 \quad (1), \quad F_1 \sin 20° - F_2 \sin 30° = 0 \quad \Rightarrow \quad F_1 = F_2 \frac{\sin 30°}{\sin 20°} \quad (2). \]

Substituting (2) into (1) gives \(F_2 (\sin 30° \cot 20° = \cos 30°) = 255 \quad \Rightarrow \quad F_2 \approx 114 \). Substituting this into (2) gives \(F_1 \approx 166 \).

14. \(|r| = |r| |\mathbf{F}| \sin \theta = (0.40)(50) \sin(90° - 30°) \approx 17.3 \) N-m.

15. The line has direction \(\mathbf{v} = (-3, 2, 3) \). Letting \(P_0 = (4, -1, 2) \), parametric equations are

\[
x = 4 - 3t, \quad y = -1 + 2t, \quad z = 2 + 3t.
\]

16. A direction vector for the line is \(\mathbf{v} = (3, 2, 1) \), so parametric equations for the line are \(x = 1 + 3t, \quad y = 2t, \quad z = -1 + t \).

17. A direction vector for the line is a normal vector for the plane, \(\mathbf{n} = (2, -1, 5) \), and parametric equations for the line are

\[
x = -2 + 2t, \quad y = 2 - t, \quad z = 4 + 5t.
\]

18. Since the two planes are parallel, they will have the same normal vectors. Then we can take \(\mathbf{n} = (1, 4, -3) \) and an equation of the plane is \(1(x - 2) + 4(y - 1) - 3(z - 0) = 0 \) or \(x + 4y - 3z = 6 \).

19. Here the vectors \(\mathbf{a} = (4 - 3, 0 - (-1), 2 - 1) = (1, 1, 1) \) and \(\mathbf{b} = (6 - 3, 3 - (-1), 1 - 1) = (3, 4, 0) \) lie in the plane, so \(\mathbf{n} = \mathbf{a} \times \mathbf{b} = (-1, 3, 1) \) is a normal vector to the plane and an equation of the plane is

\[
-4(x - 3) + 3(y - (-1)) + 1(z - 1) = 0 \quad \text{or} \quad -4x + 3y + z = -14.
\]

20. If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given line lies in the plane, its direction vector \(\mathbf{a} = (2, -1, 3) \) is one vector in the plane. We can verify that the given point \((1, 2, -2) \) does not lie on this line. The point \((0, 3, 1) \) is on the line (obtained by putting \(t = 0 \)) and hence in the plane, so the vector \(\mathbf{b} = (0 - 1, 3 - 2, 1 - (-2)) = (-1, 1, 3) \) lies in the plane, and a normal vector is \(\mathbf{n} = \mathbf{a} \times \mathbf{b} = (-6, -9, 1) \). Thus an equation of the plane is \(-6(x - 1) - 9(y - 2) + (z + 2) = 0 \) or \(6x + 9y - z = 26 \).
21. Substitution of the parametric equations into the equation of the plane gives
\[2x - y + z = 2(2 - t) - (1 + 3t) + 4t = 2 \Rightarrow -t + 3 = 2 \Rightarrow t = 1.\]
When \(t = 1\), the parametric equations give \(x = 2 - 1 = 1, \ y = 1 + 3 = 4\) and \(z = 4\). Therefore, the point of intersection is \((1, 4, 4)\).

22. Use the formula proven in Exercise 12.4.45(a). In the notation used in that exercise, \(a\) is just the direction of the line; that is, \(a = (1, -1, 2)\). A point on the line is \((1, 2, -1)\) (setting \(t = 0\)), and therefore \(b = (1 - 0, 2 - 0, -1 - 0) = (1, 2, -1)\).

Hence \(d = \frac{|a \times b|}{|b|} = \frac{|(1, -1, 2) \times (1, 2, -1)|}{\sqrt{1 + 4 + 4}} = \frac{|(-3, 3, 3)|}{\sqrt{6}} = \frac{\sqrt{27}}{\sqrt{6}} = \frac{3}{\sqrt{2}}\).

23. Since the direction vectors \((2, 3, 4)\) and \((6, -1, 2)\) aren’t parallel, neither are the lines. For the lines to intersect, the three equations \(1 + 2t = -1 + 6s, 2 + 3t = 3 - s, 3 + 4t = -5 + 2s\) must be satisfied simultaneously. Solving the first two equations gives \(t = \frac{3}{5}, s = \frac{1}{5}\) and checking we see these values don’t satisfy the third equation. Thus the lines aren’t parallel and they don’t intersect, so they must be skew.

24. (a) The normal vectors are \((1, 1, -1)\) and \((2, -3, 4)\). Since these vectors aren’t parallel, neither are the planes parallel.

Also \((1, 1, -1) \cdot (2, -3, 4) = 2 - 3 - 4 = -5 \neq 0\) so the normal vectors, and thus the planes, are not perpendicular.

(b) \(\cos \theta = \frac{(1, 1, -1) \cdot (2, -3, 4)}{\sqrt{3} \sqrt{26}} = -\frac{5}{\sqrt{69}}\) and \(\theta = \cos^{-1}\left(-\frac{5}{\sqrt{69}}\right) \approx 122^\circ\) (or we can say \(\approx 58^\circ\)).

25. \(n_1 = (0, 0, 1)\) and \(n_2 = (0, 1, 2)\). Setting \(z = 0\), it is easy to see that \((1, 3, 0)\) is a point on the line of intersection of \(x + z = 1\) and \(y + 2z = 3\). The direction of this line is \(v_1 = n_1 \times n_2 = (1, -2, 1)\). A second vector parallel to the desired plane is \(v_2 = (1, 1, -2)\), since it is perpendicular to \(x + y - 2z = 1\). Therefore, the normal of the plane in question is \(n = v_1 \times v_2 = (4 - 1, 1 + 2, 1 + 2) = (3, 3, 3)\). Taking \((x_0, y_0, z_0) = (1, 3, 0)\), the equation we are looking for is \(3(x - 1) + 3(y - 3) + 3z = 0 \iff x + y + z = 4\).

26. (a) The vectors \(\overrightarrow{AB} = (-1 - 2, -1 - 1, 10 - 1) = (-3, -2, 9)\) and \(\overrightarrow{AC} = (1 - 2, 3 - 1, -4 - 1) = (-1, 2, -5)\) lie in the plane, so \(n = \overrightarrow{AB} \times \overrightarrow{AC} = (-3, -2, 9) \times (-1, 2, -5) = (-8, -24, -8)\) or equivalently \((1, 3, 1)\) is a normal vector to the plane. The point \(A(2, 1, 1)\) lies on the plane so an equation of the plane is \(1(x - 2) + 3(y - 1) + 1(z - 1) = 0\) or \(x + 3y + z = 6\).

(b) The line is perpendicular to the plane so it is parallel to a normal vector for the plane, namely \((1, 3, 1)\). If the line passes through \((1, 1, 10)\) then symmetric equations are \(\frac{x - (-1)}{1} = \frac{y - (-1)}{3} = \frac{z - 10}{1}\) or \(x + 1 = \frac{y + 1}{3} = z - 10\).

(c) Normal vectors for the two planes are \(n_1 = (1, 3, 1)\) and \(n_2 = (2, -4, -3)\). The angle \(\theta\) between the planes is given by

\[
\cos \theta = \frac{n_1 \cdot n_2}{|n_1||n_2|} = \frac{(1, 3, 1) \cdot (2, -4, -3)}{\sqrt{1^2 + 3^2 + 1^2} \sqrt{2^2 + (-4)^2 + (-3)^2}} = \frac{2 - 12 - 3}{\sqrt{11} \sqrt{29}} = \frac{13}{\sqrt{319}}
\]

Thus \(\theta = \cos^{-1}\left(-\frac{13}{\sqrt{319}}\right) \approx 137^\circ\) or \(180^\circ - 137^\circ = 43^\circ\).
(d) From part (c), the point (2, 0, 4) lies on the second plane, but notice that the point also satisfies the equation of the first plane, so the point lies on the line of intersection of the planes. A vector \(\mathbf{v} \) in the direction of this intersecting line is perpendicular to the normal vectors of both planes, so take \(\mathbf{v} = \mathbf{n}_1 \times \mathbf{n}_2 = (1, 3, 1) \times (2, -4, -3) = (-5, 5, -10) \) or equivalently we can take \(\mathbf{v} = (1, -1, 2) \). Parametric equations for the line are \(x = 2 + t, y = -4, z = 4 - 2t \).

27. By Exercise 12.5.7S, \(D = \frac{|1 - 2 - (-24)|}{\sqrt{2^2 + 1^2 + (-4)^2}} = \frac{22}{\sqrt{26}} \).

28. The equation \(x = 3 \) represents a plane parallel to the \(yz \)-plane and 3 units in front of it.

29. The equation \(x = z \) represents a plane perpendicular to the \(xz \)-plane and intersecting the \(xx \)-plane in the line \(x = z, y = 0 \).

30. The equation \(y = z^2 \) represents a parabolic cylinder whose trace in the \(xz \)-plane is the \(x \)-axis and which opens to the right.

31. The equation \(x^2 + y^2 + 4z^2 \) represents a (right elliptical) cone with vertex at the origin and axis the \(x \)-axis.

32. \(4x - y + 2z = 4 \) is a plane with intercepts \((1, 0, 0)\), \((0, -4, 0)\), and \((0, 0, 2)\).

33. An equivalent equation is \(-x^2 + \frac{y^2}{4} - z^2 = 1\), a hyperboloid of two sheets with axis the \(y \)-axis. For \(|y| > 2\), traces parallel to the \(xz \)-plane are circles.
34. An equivalent equation is \(-x^2 + y^2 + z^2 = 1\), a hyperboloid of one sheet with axis the \(x\)-axis.

![Image of a hyperboloid]

35. Completing the square in \(y\) gives

\[4x^2 + 4(y - 1)^2 + z^2 = 4 \text{ or } x^2 + (y - 1)^2 + \frac{z^2}{4} = 1,\]

an ellipsoid centered at \((0, 1, 0)\).

36. Completing the square in \(y\) and \(z\) gives

\[x = (y - 1)^2 + (z - 2)^2,\] a circular paraboloid with vertex \((0, 1, 2)\) and axis the horizontal line \(y = 1, z = 2\).

![Image of a paraboloid]

37. \(4x^2 + y^2 = 16 \iff \frac{x^2}{4} + \frac{y^2}{16} = 1\). The equation of the ellipsoid is \(\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{c^2} = 1\), since the horizontal trace in the plane \(z = 0\) must be the original ellipse. The traces of the ellipsoid in the \(yz\)-plane must be circles since the surface is obtained by rotation about the \(x\)-axis. Therefore, \(c^2 = 16\) and the equation of the ellipsoid is

\[\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{16} = 1 \iff 4x^2 + y^2 + z^2 = 16.\]

38. The distance from a point \(P(x, y, z)\) to the plane \(y = 1\) is \(|y - 1|\), so the given condition becomes

\[|y - 1| = 2 \sqrt{(x - 0)^2 + (y + 1)^2 + (z - 0)^2} \implies |y - 1| = 2 \sqrt{x^2 + (y + 1)^2 + z^2} \implies (y - 1)^2 = 4x^2 + 4(y + 1)^2 + 4z^2 \iff -3 = 4y^2 + (3y^2 + 10y) + 4z^2 \iff \frac{4y^2}{3} = 4x^2 + 3(y + \frac{5}{3})^2 + 4z^2 \implies \frac{4}{3} = \frac{4}{3} x^2 + \frac{4}{3} (y + \frac{5}{3})^2 + \frac{4}{3} z^2 = 1.\]

This is the equation of an ellipsoid whose center is \((0, -\frac{5}{3}, 0)\).