The Method of Lagrange Multipliers

S. Sawyer - July 23, 2004

1. Lagrange's Theorem. Suppose that we want to maximize (or minimize) a function of n variables

$$
\begin{equation*}
f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad \text { for } \quad x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{1.1a}
\end{equation*}
$$

subject to p constraints

$$
\begin{equation*}
g_{1}(x)=c_{1}, \quad g_{2}(x)=c_{2}, \quad \ldots, \quad \text { and } \quad g_{p}(x)=c_{p} \tag{1.1b}
\end{equation*}
$$

As an example for $p=1$, find

$$
\begin{equation*}
\min _{x_{1}, \ldots, x_{n}}\left\{\sum_{i=1}^{n} x_{i}^{2}: \sum_{i=1}^{n} x_{i}=1\right\} \tag{1.2a}
\end{equation*}
$$

or for $p=2$

$$
\min _{x_{1}, \ldots, x_{5}} \sum_{i=1}^{5} x_{i}^{2} \quad \text { subject to } \quad\left\{\begin{array}{l}
x_{1}+2 x_{2}+x_{3}=1 \quad \text { and } \tag{1.2b}\\
x_{3}-2 x_{4}+x_{5}=6
\end{array}\right.
$$

A first guess for (1.1) (with $f(x)=\sum_{i=1}^{n} x_{i}^{2}$ in (1.2)) might be to look for solutions of the n equations

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}} f(x)=0, \quad 1 \leq i \leq n \tag{1.3}
\end{equation*}
$$

However, this leads to $x_{i}=0$ in (1.2), which does not satisfy any of the constraints.

Lagrange's solution is to introduce p new parameters (called Lagrange Multipliers) and then solve a more complicated problem:

Theorem (Lagrange) Assuming appropriate smoothness conditions, minimum or maximum of $f(x)$ subject to the constraints (1.1b) that is not on the boundary of the region where $f(x)$ and $g_{j}(x)$ are defined can be found by introducing p new parameters $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ and solving the system

$$
\begin{align*}
& \frac{\partial}{\partial x_{i}}\left(f(x)+\sum_{j=1}^{p} \lambda_{j} g_{j}(x)\right)=0, \quad 1 \leq i \leq n \tag{1.4a}\\
& g_{j}(x)=c_{j}, \quad 1 \leq j \leq p \tag{1.4b}
\end{align*}
$$

This amounts to solving $n+p$ equations for the $n+p$ real variables in x and λ. In contrast, (1.3) has n equations for the n unknowns in x. Fortunately, the system (1.4) is often easy to solve, and is usually much easier than using the constraints to substitute for some of the x_{i}.

The Method of Lagrange Multipliers .2
2. Examples. (1) There are $p=1$ constraints in (1.2a), so that (1.4a) becomes

$$
\frac{\partial}{\partial x_{i}}\left(\sum_{k=1}^{n} x_{k}^{2}+\lambda \sum_{k=1}^{n} x_{k}\right)=2 x_{i}+\lambda=0, \quad 1 \leq i \leq n
$$

with $\sum_{i=1}^{n} x_{i}=1$. Thus $x_{i}=-\lambda / 2$ for $1 \leq i \leq n$ and hence $\sum_{i=1}^{n} x_{i}=$ $-n \lambda / 2=1$. We conclude $\lambda=-2 / n$, from which it follows that $x_{i}=1 / n$ for $1 \leq i \leq n$.

For $x_{i}=1 / n, f(x)=n / n^{2}=1 / n$. One can check that this is a minimum as opposed to a maximum or saddle point by noting that $f(x)=1$ if $x_{1}=1$, $x_{i}=0$ for $2 \leq i \leq n$.
(2) A System with Two Constraints: There are $p=2$ constraints in (1.2b), which is to find

$$
\min _{x_{1}, \ldots, x_{5}} \sum_{i=1}^{5} x_{i}^{2} \quad \text { subject to } \quad\left\{\begin{array}{l}
x_{1}+2 x_{2}+x_{3}=1 \quad \text { and } \tag{2.1}\\
x_{3}-2 x_{4}+x_{5}=6
\end{array}\right.
$$

The method of Lagrange multipliers says to look for solutions of

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}}\left(\sum_{k=1}^{5} x_{k}^{2}+\lambda\left(x_{1}+2 x_{2}+x_{3}\right)+\mu\left(x_{3}-2 x_{4}+x_{5}\right)\right)=0 \tag{2.2}
\end{equation*}
$$

where we write λ, μ for the two Lagrange multipliers λ_{1}, λ_{2}.
The equations (2.2) imply $2 x_{1}+\lambda=0,2 x_{2}+2 \lambda=0,2 x_{3}+\lambda+\mu=0$, $2 x_{4}-2 \mu=0$, and $2 x_{5}+\mu=0$. Combining the first three equations with the first constraint in (2.1) implies $2+6 \lambda+\mu=0$. Combining the last three equations in (2.2) with the second constraint in (2.1) implies $12+\lambda+6 \mu=0$. Thus

$$
\begin{aligned}
& 6 \lambda+\mu=-2 \\
& \lambda+6 \mu=-12
\end{aligned}
$$

Adding these two equations implies $7(\lambda+\mu)=-14$ or $\lambda+\mu=-2$. Subtracting the equations implies $5(\lambda-\mu)=10$ or $\lambda-\mu=2$. Thus $(\lambda+\mu)+(\lambda-\mu)=2 \lambda=0$ and $\lambda=0, \mu=-2$. This implies $x_{1}=x_{2}=0$, $x_{3}=x_{5}=1$, and $x_{4}=-2$. The minimum value in (2.1) is 6 .
(3) A BLUE problem: Let X_{1}, \ldots, X_{n} be independent random variables with $E\left(X_{i}\right)=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}$. Find the coefficients a_{i} that minimize

$$
\begin{equation*}
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) \quad \text { subject to } \quad E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\mu \tag{2.3}
\end{equation*}
$$

This asks us to find the Best Linear Unbiased Estimator $\sum_{i=1}^{n} a_{i} X_{i}$ (abbreviated BLUE) for μ for given values of σ_{i}^{2}.

Since $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$ and $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$ for independent random variables X and Y, we have $\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=$ $\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}$. Thus (2.3) is equivalent to finding

$$
\min \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2} \quad \text { subject to } \quad \sum_{i=1}^{n} a_{i}=1
$$

Using one Lagrange multiplier λ for the constraint leads to the equations $2 a_{i} \sigma_{i}^{2}+\lambda=0$ or $a_{i}=-\lambda /\left(2 \sigma_{i}^{2}\right)$. The constraint $\sum_{i=1}^{n} a_{i}=1$ then implies that the BLUE for μ is

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} X_{i} \quad \text { where } \quad a_{i}=c / \sigma_{i}^{2} \quad \text { for } \quad c=1 / \sum_{k=1}^{n}\left(1 / \sigma_{k}^{2}\right) \tag{2.4}
\end{equation*}
$$

If $\sigma_{i}^{2}=\sigma^{2}$ for all i, then $a_{i}=1 / n$ and $\sum_{i=1}^{n} a_{i} X_{i}=(1 / n) \sum_{i=1}^{n} X_{i}=\bar{X}$ is the BLUE for μ.

Conversely, if $\operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}$ is variable, then the BLUE $\sum_{i=1}^{n} a_{i} X_{i}$ for μ puts relatively less weight on the noisier (higher-variance) observations (that is, the weight a_{i} is smaller), but still uses the information in the noiser observations. Formulas like (2.4) are often used in survey sampling.
3. A Short Proof of Lagrange's Theorem. The extremal condition (1.3) (without any constraints) can be written in vector form as

$$
\begin{equation*}
\nabla f(x)=\left(\frac{\partial}{\partial x_{1}} f(x), \frac{\partial}{\partial x_{2}} f(x), \ldots, \frac{\partial}{\partial x_{n}} f(x)\right)=0 \tag{3.1}
\end{equation*}
$$

By Taylor's Theorem

$$
\begin{equation*}
f(x+h y)=f(x)+h y \cdot \nabla f(x)+O\left(h^{2}\right) \tag{3.2}
\end{equation*}
$$

where h is a scalar, $O\left(h^{2}\right)$ denotes terms that are bounded by h^{2}, and $x \cdot y$ is the dot product. Thus (3.1) gives the vector direction in which $f(x)$ changes the most per unit change in x, where unit change in measured in terms of the length of the vector x.

In particular, if $y=\nabla f\left(x_{0}\right) \neq 0$, then

$$
f\left(x_{0}-h y\right)<f\left(x_{0}\right)<f\left(x_{0}+h y\right)
$$

The Method of Lagrange Multipliers
for sufficiently small values of h, and the only way that x_{0} can be a local minimum or maximum would be if x_{0} were on the boundary of the set of points where $f(x)$ is defined. This implies that $\nabla f\left(x_{0}\right)=0$ at non-boundary minimum and maximum values of $f(x)$.

Now consider the problem of finding

$$
\begin{equation*}
\max f(x) \quad \text { subject to } \quad g(x)=c \tag{3.3}
\end{equation*}
$$

for one constraint. If $x=x_{1}(t)$ is a path in the surface defined by $g(x)=c$, then by the chain rule

$$
\begin{equation*}
\frac{d}{d t} g\left(x_{1}(0)\right)=\frac{d}{d t} x_{1}(0) \cdot \nabla g\left(x_{1}(0)\right)=0 \tag{3.4}
\end{equation*}
$$

This implies that $\nabla g\left(x_{1}(0)\right)$ is orthogonal to the tangent vector $(d / d t) x_{1}(0)$ for any path $x_{1}(t)$ in the surface defined by $g(x)=c$.

Conversely, if x_{0} is any point in the surface $g(x)=c$ and y is any vector such that $y \cdot \nabla g\left(x_{0}\right)=0$, then it follows from the Implicit Function Theorem there exists a path $x_{1}(t)$ in the surface $g(x)=c$ such that $x_{1}(0)=x_{0}$ and $(d / d t) x_{1}(0)=y$. This result and (3.4) imply that the gradient vector $\nabla g\left(x_{0}\right)$ is always orthogonal to the surface defined by $g(x)=c$ at x_{0}.

Now let x_{0} be a solution of (3.3). I claim that $\nabla f\left(x_{0}\right)=\lambda \nabla g\left(x_{0}\right)$ for some scalar λ. First, we can always write $\nabla f\left(x_{0}\right)=c \nabla g\left(x_{0}\right)+y$ where $y \cdot \nabla g\left(x_{0}\right)=0$. If $x(t)$ is a path in the surface with $x(0)=x_{0}$ and $(d / d t) x(0)$. $\nabla f\left(x_{0}\right) \neq 0$, it follows from (3.2) with $y=(d / d t) x(0)$ that there are values for $f(x)$ for $x=x(t)$ in the surface that both larger and smaller than $f\left(x_{0}\right)$.

Thus, if x_{0} is a maximum of minimum of $f(x)$ in the surface and $\nabla f\left(x_{0}\right)=c \nabla g\left(x_{0}\right)+y$ for $y \cdot \nabla g\left(x_{0}\right)=0$, then $y \cdot \nabla f\left(x_{0}\right)=y \cdot \nabla g\left(x_{0}\right)+y \cdot y=$ $y \cdot y=0$ and $y=0$. This means that $\nabla f\left(x_{0}\right)=c \nabla g\left(x_{0}\right)$, which completes the proof of Lagrange's Theorem for one constraint ($p=1$).

Next, suppose that we want to solve

$$
\begin{equation*}
\max f(x) \quad \text { subject to } \quad g_{1}(x)=c_{1}, \ldots, g_{p}(x)=c_{p} \tag{3.5}
\end{equation*}
$$

for p constraints. Let x_{0} be a solution of (3.5). Recall that the each vector $\nabla g_{j}\left(x_{0}\right)$ is orthogonal to the surface $g_{j}(x)=c_{j}$ at x_{0}. Let \mathcal{L} be the linear space

$$
\mathcal{L}=\operatorname{span}\left\{\nabla g_{j}\left(x_{0}\right): 1 \leq j \leq p\right\}
$$

I claim that $\nabla f\left(x_{0}\right) \in \mathcal{L}$. This would imply

$$
\nabla f\left(x_{0}\right)=\sum_{j=1}^{p} \lambda_{j} \nabla g_{j}\left(x_{0}\right)
$$

for some choice of scalar values λ_{j}, which would prove Lagrange's Theorem.
To prove that $\nabla f\left(x_{0}\right) \in \mathcal{L}$, first note that, in general, we can write $\nabla f\left(x_{0}\right)=w+y$ where $w \in \mathcal{L}$ and y is perpendicular to \mathcal{L}, which means that $y \cdot z=0$ for any $z \in \mathcal{L}$. In particular, $y \cdot \nabla g_{j}\left(x_{0}\right)=0$ for $1 \leq j \leq p$. Now find a path $x_{1}(t)$ through x_{0} in the intersection of the surfaces $g_{j}(x)=c_{j}$ such that $x_{1}(0)=x_{0}$ and $(d / d t) x_{1}(0)=y$. (The existence of such a path for sufficiently small t follows from a stronger form of the Implicit Function Theorem.) It then follows from (3.2) and (3.5) that $y \cdot \nabla f\left(x_{0}\right)=0$. Since $\nabla f\left(x_{0}\right)=w+y$ where $y \cdot w=0$, it follows that $y \cdot \nabla f\left(x_{0}\right)=y \cdot w+y \cdot y=y \cdot y=0$ and $y=0$, This implies that $\nabla f\left(x_{0}\right)=w \in \mathcal{L}$, which completes the proof of Lagrange's Theorem.
4. Warnings. The same warnings apply here as for most methods for finding a maximum or minimum:

The system (1.4) does not look for a maximum (or minimum) of $f(x)$ subject to constraints $g_{j}(x)=c_{j}$, but only a point x on the set of values determined by $g_{j}(x)=c_{j}$ whose first-order changes in x are zero. This is satisfied by a value $x=x_{0}$ that provides a minimum or maximum typical for $f(x)$ in a neighborhood of x_{0}, but may only be a local minimum or maximum. There may be several local minima or maxima, each yielding a solution of (1.4). The criterion (1.4) also holds for "saddle points" of $f(x)$ that are local maxima in some directions or coordinates and local minima in others. In these cases, the different values $f(x)$ at the solutions of (1.4) have to be evaluated individually to find the global maximum.

A particular situation to avoid is to look for a maximum value of $f(x)$ by solving (1.4) or (1.3) when $f(x)$ takes arbitrarily large values when any of the components of x are large (as is the case for $f(x)$ in (1.2)) and (1.4) has a unique solution x_{0}. In that case, x_{0} is probably the global minimum of $f(x)$ subject to the constraints, and not a maximum. In that case, rather than find the best possible value of $f(x)$, one may end up with the worst possible value. After solving (1.3) or (1.4), one often has to look at the problem more carefully to see if it is a global maximum, a global minimum, or neither.

Another situation to avoid is when the maximum or minimum is on the boundary of the values for which $f(x)$ is defined. In that case, the maximum or minimum is not an interior value, and the first-order changes in $f(x)$ (that is, the partial derivatives of $f(x))$ may not be zero at that point. An example is $f(x)=x$ on the unit interval $0 \leq x \leq 1$. The minimum value of $f(x)=x$ on the interval is $x=0$ and the maximum is $x=1$, but neither are solutions of $f^{\prime}(x)=0$.

