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Assume that X1, X2, . . . , Xn are independent and identically distributed ran-
dom variables with E(Xi) = µ, Var(Xi) = σ2, and E(X4

i ) < ∞. Suppose
that we are interested in estimating σ2. Then

σ̂2 =
1
n

n∑

i=1

(Xi − µ)2 and s2 =
1

n− 1

n∑

i=1

(Xi −X)2

both provide unbiased estimators of σ2 where X = (1/n)
∑n

i=1 Xi is the
sample mean. However, these are not generally the most efficient estimators
of σ2 in the sense of minimizing the squared error, whether the mean µ is
known or unknown.

Suppose first that the Xi are normally distributed. We show below that,
first,

S1(µ) =
1

n + 2

n∑

k=1

(
Xk − µ)2 (1)

is the estimator of the form

T1(µ) =
n∑

k=1

n∑

`=1

ak`(Xk − µ)(X` − µ) (2)

that minimizes E
( (

T1(µ)− σ2
)2) and, second, that

S2 =
1

n + 1

n∑

k=1

(
Xk −X)2 (3)

is the estimator of the form

T2 =
n∑

k=1

n∑

`=1

ak`(Xk −X)(X` −X) (4)

that minimizes E
( (

T2 − σ2
)2).

If the Xi are not normal, the minimum-RMS estimators become

S1(µ) =
1

n + c

n∑

k=1

(
Xk − µ)2 (5)
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and

S2 =
n

(n + c)(n− 1) + 2

n∑

k=1

(
Xk −X)2 (6)

respectively, where

c =
Var

(
(Xi − µ)2

)

Var(Xi)2
=

E
(
(Xi − µ)4)− σ4

σ4
(7)

Theorem. Assume E(Xi) = µ, Var(Xi) = σ2, and E(X4
i ) < ∞ for inde-

pendent random variables Xi. Then
(i) The minimum value over all symmetric matrices aij of

E







n∑

i=1

n∑

j=1

aij(Xi − µ)(Xj − µ) − σ2




2

 (8a)

is attained when

aij =





0 if i 6= j
1

n + c
if i = j

(8b)

for c in (7). If the Xi are normal, then c = 2.
(ii) The minimum value over all symmetric matrices bij of

E







n∑

i=1

n∑

j=1

bij(Xi −X)(Xj −X) − σ2




2

 (9a)

is attained when

bij =





0 if i 6= j
n

(n + c)(n− 1) + 2
if i = j (9b)

for c in (7). If the Xi are normal, then bii = 1/(n + 1).

Remark. For an alternative proof, one could begin with the fact that the
expected value in (8a) is a convex function of symmetric matrices a (and
that it also satisfies the parallelogram law) and conclude that any minimal
solution of (8a) or (9a) must be of the form

aij =
{

a if i = j
b if i 6= j
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However, this only helps slightly in the proof of part (i) and seems to make
the proof of (ii) more difficult. See later remarks for more details.

Proof of Theorem. (i) Assume E(Xi) = µ = 0 and consider

φ(a) = E




(
n∑

k=1

n∑

`=1

ak`XkX` − σ2

)2

 (10a)

as a function of n(n + 1)/2 variables aij (1 ≤ i ≤ j ≤ n). Then

∂

∂aij
φ(a) = Cij E

(
XiXj

(
n∑

k=1

n∑

`=1

ak`XkX` − σ2

) )

= Cij

(
n∑

k=1

n∑

`=1

ak`E(XiXjXkX`) − σ2E(XiXj)

)
(10b)

where Cij = 4 if i 6= j and Cij = 2 if i = j. Since the Xi are independent and
E(Xi) = 0, E(XiXj) = E(Xi)E(Xj) = 0 if i 6= j and E(XaXbXcXd) = 0 if
any of the indices a, b, c, d are unmatched. This leads to

∂

∂aij
φ(a) =

{
8aijσ

4 if i 6= j

2
(∑n

k=1 akkE(X2
kX2

i )− σ4
)

if i = j
(10c)

The first equation above implies aij = 0 if i 6= j at a minimum value of (10a).
The second equation implies

aii

(
E(X4

i )− E(X2
i )2

)
+

(
n∑

k=1

akk

)
σ4 − σ4 = 0

for 1 ≤ i ≤ n. Thus aii = a where aVar(X2
i ) + naσ4 = σ4 so that aii =

a = σ4/
(
Var(X2

i ) + nσ4
)

= 1/(n + c) for c = Var(Xi)/σ4. This implies (8b),
which is the first part of the theorem. If the Xi are normal with mean zero,
then E(X4

i ) = 3σ4 and c = 2.

(ii) If ci+ = (1/n)
∑n

j=1 cij for a general matrix cij , then

∑

i

∑

j

bijci+ =
1
n

∑

i

∑

j

∑

k

bijcik =
∑

i

∑

j

(bi+)cij

It follows that
n∑

i=1

n∑

j=1

bij(Xi −X)(Xj −X) =
n∑

i=1

n∑

j=1

aij(Xi − d)(Xj − d) (11a)
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for any constant d where

aij = bij − bi+ − b+j + b, b =
1
n2

n∑

i=1

n∑

j=1

bij (11b)

An arbitrary symmetric matrix aij can be written in the form (11b) for some
other matrix bij if and only if ai+ = 0 for 1 ≤ i ≤ n. Thus if E(Xi) = d = 0

min
b

E







n∑

i=1

n∑

j=1

bij(Xi −X)(Xj −X) − σ2




2

 (12a)

= min
a

E







n∑

i=1

n∑

j=1

aijXiXj − σ4




2

 (12b)

subject to the conditions ai+ = 0 for 1 ≤ i ≤ n.
We use Lagrange multipliers in (12b) with the n constaints ψp(a) =∑n

k=1 apk = 0 (1 ≤ p ≤ n) for symmetric matrices a. This leads to

∂

∂aij

(
φ(a)−

n∑
p=1

λpψp(a)

)
= 0

for 1 ≤ i ≤ j ≤ n, φ(a) in (10a), and n additional constants λp. The
relations (10c) imply

8aij σ4 − λi − λj = 0, i 6= j (13a)

2aii

(
E(X4

i )− σ4
)

+ 2

(
n∑

k=1

akk

)
σ4 − 2σ4 − λi = 0, i = j (13b)

Set θ = E(X4
i ) − σ4 and Λ =

∑n
k=1 λk. Since

∑n
j=1 aij = 0, we must have∑n

j=1,j 6=i aij = −aii. Applying this in (13) implies −8aiiσ
4 − (n − 1)λi −

(Λ− λi) = 0 and

aii8σ4 + (n− 2)λi = −Λ (14a)

aii2θ − λi = 2σ4

(
1−

n∑

k=1

akk

)
(14b)
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The negative of the determinant of the 2 × 2 system (14) for aii and λi is
8σ4 + 2θ(n − 2) > 0 since θ ≥ 0, excluding the trivial case σ2 = 0. This
means that aii = a and λi = λ are both constant. In particular Λ = nλ
and (14) simplifies to

a8σ4 + (2n− 2)λ = 0

a2θ − λ = 2σ4(1− na) (15)

Thus λ = −4aσ4/(n− 1) and

2a

(
θ +

2σ4

n− 1
+ nσ4

)
= 2σ4

a = aii =
n− 1

(n + c)(n− 1) + 2
(16)

since θ/σ4 = c. It follows from (13a) that aij = 2λ/(8σ4) = −a/(n − 1) if
i 6= j, which also follows from

∑n
j=1 aij = 0.

Finally, the quadratic form in bij in (11a) is the same if you add any
constant to all of its entries. Thus there is a diagonal matrix bij = aij +
a/(n− 1) that minimizes (12a) with

bii = aii +
a

n− 1
= a

n

n− 1
=

n

(n + c)(n− 1) + 2

If the Xi are normal, then c = 2 and bii = 1/(n + 1), which completes the
proof of the theorem.

An Alternative Approach. The function

φ(a) = E




(
n∑

k=1

n∑

`=1

ak`XkX` − σ2

)2

 (10)

is a convex function of symmetric matrices a viewed as points in Rn(n+1)/2.
We also have the “parallelogram identity”

φ(a) + φ(b)
2

= φ

(
a + b

2

)
+ φ

(
a− b

2

)
(11)

Now suppose that a is the minimum value of (10). Since the Xi are identically
distributed, φ(b) = φ(a) whenever b = P ′aP and P is any permutation of
the coordinates. In that case, bij = aπiπj , where π is a permutation of
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{1, 2, 3, . . . , n}. Thus if φ(a) is the minimum value of (10), then φ(a) = φ(b)
whenever b = P ′aP , and φ((a + b)/2) must also be the minimum. This
implies φ((a− b)/2) = 0 and

n∑

i=1

n∑

j=1

cijXiXj = 0 almost surely for c = (a− b)/2

We can conclude from this that c = 0 unless the Xi are highly singular and
thus a = b = P ′aP . If a = P ′aP for all permutation matrices P , then

aij =
{

a if i = j
b if i 6= j

for constants a and b. However, this turns out not to simply the proofs of
parts (i) and (ii) of the theorem a great deal, and actually seems to make
the proof of part (ii) more difficult.


