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1. Introduction. Let T1, T2, . . . , Tn be the times of either (i) an observed
death or failure or (ii) the last time that a living individual was seen. Set
δi = 0 if Ti is an observed death and δi = 1 if the ith individual was last
seen alive at time Ti, but has not been seen since. If δi = 1, the true death
time for the ith individual is Xi > Ti but the individual dropped out of the
study at that time. In that case, we say that Xi was censored at time Ti. If
δi = 0, Ti is the time of an observed death or failure.

Let 0 < t1 < t2 < · · · < tr be the distinct observed death times in the
sample, arranged in increasing order. That is, ti are the distinct times t = ti
for which Tj = t and δj = 0 for some j. Let ni be the size of the risk set
at time ti. That is, ni is the number of individuals in the sample that were
alive (or “at risk”) just before time ti. Equivalently, ni is the number of
individuals who are either alive and observed at time ti or else who died at
time ti. For i < r, ni+1 = ni−di−ci where di is the number who died at time
t = ti and ci is the number who are censored at times t with ti ≤ t < ti+1.

The Kaplan-Meier or product-limit estimator ̂S(t) of the survival func-
tion S(t) = Pr(T > t) is

̂S(t) =
∏

ti≤t

(

1− di

ni

)

(1.1)

The purpose here is to derive two approximate 95% confidence intervals for
S(t) for a fixed t, or, in general, (1−α)× 100% confidence intervals for S(t).
The first is Greenwood’s (1926) confidence interval

̂S(t) ± zα/2

√

̂Var
[

̂S(t)
]

where (1.2a)

̂Var
[

̂S(t)
]

= ̂S(t)2
∑

ti≤t

di

ni(ni − di)
(1.2b)

In (1.2b), zα is the α-th quantile of the normal distribution, so that (for
example) z0.025 = −1.960. In particular, zα/2 = −1.96 for a 95% confidence
interval. If ni = di, which can only happen if i = r and t ≥ tr, the last term
in the sum in (1.2b) is omitted.

The second confidence interval is called the “exponential” Greenwood
formula. This is attributed by Hosmer and Lemeshow (1999) to the earlier
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textbook Kalbfleisch and Prentice (1980). This gives an asymmetric confi-
dence interval

exp(− exp(c+(t))) < S(t) < exp(− exp(c−(t)) (1.3a)

where

c±(t) = log(− log ̂S(t)) ± zα/2

√

̂V and (1.3b)

̂V =
1

(

log ̂S(t)
)2

∑

ti≤t

di

ni(ni − di)

Note that exp(− exp(c2)) < exp(− exp(c1)) if c1 < c2.
The advantage of (1.3) over the more traditional Greenwood confidence

interval (1.2) is that the endpoints of (1.3) are guaranteed to lie in (0, 1),
whereas the endpoints of (1.2) can be negative or greater than one. Hos-
mer and Lemeshow (1999) quote a paper to the effect that the confidence
interval (1.3) behaves well for sample sizes as small as 25 with up to 50% of
observations being censored.

2. Proofs. The main idea is the “delta-method” approximation, which
assumes

f(X) ≈ f(c) + f ′(c)(X − c) (2.1)

for a function f(X) of a random variable X with c close to E(X). This
implies

E[f(X)] ≈ f(c) + f ′(c)
(

E(X)− c
)

(2.2)

Var[f(X)] ≈ f ′(c)2 Var(X)

The traditional Greenwood formula applies (2.1)–(2.2) with f(t) = log t. The
exponential Greenwood formula has essentially f(t) = log(− log t).

The Kaplan-Meier formula (1.1) implies

log ̂S(t) =
∑

ti≤t

log
(

1− di

ni

)

(2.3)

We assume that di is binomially distributed with parameters pi and ni given
the size ni of the risk set. Thus E(di) = nipi and Var(di) = nipi(1 − pi).
Using (2.1) with f(t) = log t and c = pi

log ̂S(t) ≈
∑

ti≤t

(

log(1− pi)−
1

1− pi

(

di

ni
− pi

))

= C(p) −
∑

ti≤t

1
1− pi

(

di

ni
− pi

)

(2.4)
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The terms in the sum in (2.4) are not independent, since the di in one term
affects the risk set counts nk for k > i. However, the ith term in the sum
in (2.4) has mean zero given d1, d2, . . . , di−1. (The technical term for this is
that the partial sums of the sum in (2.4) form a martingale.) The fact the
each term in the sum has mean zero conditional on the earlier terms can be
used to show that the variance of the sum in (2.4) is the sum of the variances,
even though the terms are not independent. (Exercise: Prove this.) Since
Var(di/ni | ni) = pi(1− pi)/ni, this implies

Var
(

log ̂S(t)
)

≈
∑

ti≤t

1
(1− pi)2

pi(1− pi)
ni

=
∑

ti≤t

1
ni

pi

1− pi

≈
∑

ti≤t

di

ni(ni − di)
(2.5)

by setting pi = p̂i = di/ni.
Note ̂S(t) = exp

(

Y (t)
)

for Y (t) = log ̂S(t). A second application of
(2.1)–(2.2) with f(y) = ey yields ̂Var

[

̂S(t)
]

= ̂S2(t) ̂Var
(

Y (t)
)

. This implies
Greenwood’s formula (1.2b) for the variance. All that remains is that the
distribution of the sum (2.3) is approximately normal, so that we can use
normal confidence limits. This can be shown using properties of martingales.
This completes the proof of Greenwood’s formula (1.2).

The “exponential” Greenwood formula is based on the random variables

Z(t) = log
(

Y (t)
)

= log
(

− log ̂S(t)
)

for Y (t) = − log ̂S(t)

Applying (2.2) with f(y) = log(y) implies Var
(

Z(t)
)

≈ Var
(

Y (t)
)

/Y (t)2.
Using (2.5), this implies the confidence interval

Z(t) ± zα/2

√

̂Var
(

Z(t)
)

for

̂Var
(

Z(t)
)

=
1

(

log ̂S(t)
)2

∑

ti≤t

di

ni(ni − di)

Undoing the transformation Z(t) = log
(

− log ̂S(t)
)

leads to the confidence

interval (1.3)
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