## Ma 439 - Linear Models - Fall 2010

Solutions for Problem Set \#1 - Due September 16, 2010 Prof. Sawyer - Washington University

1. For the matrix

$$
A=\left(\begin{array}{rrrrr}
-2 & 9 & -7 & 3 & -2 \\
5 & 13 & 14 & 6 & 0 \\
11 & 0 & 17 & -2 & -3
\end{array}\right)
$$

(i) $a_{2+}=\sum_{j=1}^{5} a_{2 j}=5+13+14+6+0=38$
(ii) $\sum_{i=1}^{3} a_{i 4}=3+6-2=7$
(iii) $\sum_{i=1}^{3} a_{i i}=-2+13+17=28$
(iv) $\sum_{u=1}^{3} a_{u 2} a_{u 5}=9 \times(-2)+13 \times 0+0 \times(-3)=-18$
2. The $3 \times 3$ matrices

$$
\begin{array}{ll}
\text { (i) } a_{i j}=i+j-2: & \left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
2 & 3 & 4
\end{array}\right) \\
\text { (ii) } a_{i j}=i^{j-1}: & \left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right) \\
\text { (iii) } \quad a_{i j}=j-i: & \left(\begin{array}{rrr}
0 & 1 & 2 \\
-1 & 0 & 1 \\
-2 & -1 & 0
\end{array}\right)
\end{array}
$$

3. (i)

$$
B B^{\prime}=\left(\begin{array}{rr}
1 & 7 \\
4 & 3 \\
-3 & 6
\end{array}\right)\left(\begin{array}{rrr}
1 & 4 & -3 \\
7 & 3 & 6
\end{array}\right)=\left(\begin{array}{rrr}
50 & 25 & 39 \\
25 & 25 & 6 \\
39 & 6 & 45
\end{array}\right)
$$

and

$$
B^{\prime} B=\left(\begin{array}{ccc}
1 & 4 & -3 \\
7 & 3 & 6
\end{array}\right)\left(\begin{array}{cc}
1 & 7 \\
4 & 3 \\
-3 & 6
\end{array}\right)=\left(\begin{array}{cc}
26 & 1 \\
1 & 94
\end{array}\right)
$$

(ii) $\operatorname{tr}\left(B B^{\prime}\right)=50+25+45=120$ and $\operatorname{tr}\left(B^{\prime} B\right)=26+94=120$
4.

$$
A^{2}=\left(\begin{array}{rrr}
1 & 3 & 7 \\
2 & 6 & 14 \\
-1 & -3 & -7
\end{array}\right)\left(\begin{array}{rrr}
1 & 3 & 7 \\
2 & 6 & 14 \\
-1 & -3 & -7
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and

$$
A^{\prime} A=\left(\begin{array}{rrr}
1 & 2 & -1 \\
3 & 6 & -3 \\
7 & 14 & -7
\end{array}\right)\left(\begin{array}{rrr}
1 & 3 & 7 \\
2 & 6 & 14 \\
-1 & -3 & -7
\end{array}\right)=\left(\begin{array}{rrr}
6 & 18 & 42 \\
18 & 54 & 126 \\
42 & 126 & 294
\end{array}\right)
$$

The matrices are not the same. (That is, $A^{2} \neq A^{\prime} A$.)
5. (i)

$$
j^{\prime} A=\left(\begin{array}{lll}
1 & \ldots & 1
\end{array}\right)\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ddots & \ddots & \ddots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)=\left(\begin{array}{lll}
a_{+1} & \ldots & a_{+n}
\end{array}\right)
$$

where $a_{+j}$ means the sum over the $j^{\text {th }}$ column, and
(ii)

$$
A j=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ddots & \ddots & \ddots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
1 \\
\ldots \\
1
\end{array}\right)=\left(\begin{array}{c}
a_{1+} \\
\ldots \\
a_{n+}
\end{array}\right)
$$

where $a_{i+}$ means the sum over the $i^{\text {th }}$ row.
6. (i) $A^{2}=\left(x y^{\prime}\right)\left(x y^{\prime}\right)=x\left(y^{\prime} x\right) y^{\prime}=\left(y^{\prime} x\right) x y^{\prime}=\left(y^{\prime} x\right) A=A$
(ii) Similarly, $A^{2}=\left(y^{\prime} x\right) A=0$
(iii) $\operatorname{tr}(A)=\operatorname{tr}\left(\left\{x_{i} y_{j}\right\}\right)=\sum_{i=1}^{3} x_{i} y_{i}=x^{\prime} y$.

Alternatively, since $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for any pair of matrices $A, B$ for which both $A B$ and $B A$ are defined, you can also argue $\operatorname{tr}\left(x y^{\prime}\right)=\operatorname{tr}\left(y^{\prime} x\right)=$ $y^{\prime} x$ since the trace of a $1 \times 1$ matrix is just its value.
(iv) The range of $A$ is $\left\{A z: z \in R^{3}\right\}=\left\{x y^{\prime} z: z \in R^{3}\right\}=\left\{x\left(y^{\prime} z\right)\right.$ : $\left.z \in R^{3}\right\}=\left\{\lambda x: \lambda \in R^{1}\right\}$ since $y \neq 0$ by assumption. Since $x \neq 0$ by assumption also, this is the line generated by $x$ where $x \neq 0$. Since this line is one-dimensional, range $(A)=1$.
7. (i) For fixed $i$ and $j,\left(A A^{\prime}\right)_{i j}=\sum_{k=1}^{n} a_{i k} a_{j k}$ is the dot product of the $i^{\text {th }}$ and $j^{\text {th }}$ rows of $A$, but also, for fixed $k, a_{i k} a_{j k}=\left(u_{k} u_{k}^{\prime}\right)_{i j}$ is the outer product
of the $k^{\text {th }}$ column $u_{k}$ with itself. Recall that, for two column vectors $x, y$, the outer product $x y^{\prime}$ is defined by $\left(x y^{\prime}\right)_{i j}=x_{i} y_{j}$. Thus $A A^{\prime}=\sum_{k=1}^{n} u_{k} u_{k}^{\prime}$.
(ii) For fixed $i$ and $j,\left(A^{\prime} A\right)_{i j}=\sum_{k=1}^{n} a_{k i} a_{k j}$ is the dot product of the $i^{\text {th }}$ and $j^{\text {th }}$ column of $A$, but, for fixed $k, a_{k i} a_{k j}=\left(b_{k} b_{k}^{\prime}\right)_{i j}$ is the outer product of $k^{\text {th }}$ row $r_{k}$ viewed as a column vector $b_{k}=r_{k}^{\prime}$ with itself. Thus $A^{\prime} A=\sum_{k=1}^{n} b_{k} b_{k}^{\prime}$.

