Ma 439 - Linear Models - Fall 2010

Solutions for Problem Set \#2 - Due October 19, 2010

Prof. Sawyer - Washington University
(Do problems 1-4 by hand, and problems 5-6 using SAS.)

1. (10) Since $\operatorname{Cov}(X, Y)$ for real-valued random variables X, Y is linear in both variables and $\operatorname{Cov}\left(X_{2}, X_{2}\right)=\operatorname{Cov}\left(X_{2}, X_{1}\right)$,

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{1}-X_{2}, X_{1}+X_{2}\right)=\operatorname{Cov}\left(X_{1}, X_{1}+X_{2}\right)-\operatorname{Cov}\left(X_{1}, X_{1}+X_{2}\right) \\
& \quad=\operatorname{Cov}\left(X_{1}, X_{1}\right)+\operatorname{Cov}\left(X_{1}, X_{2}\right)-\operatorname{Cov}\left(X_{2}, X_{1}\right)-\operatorname{Cov}\left(X_{2}, X_{2}\right) \\
& \quad=\operatorname{Cov}\left(X_{1}, X_{1}\right)-\operatorname{Cov}\left(X_{2}, X_{2}\right)=\operatorname{Var}\left(X_{1}\right)-\operatorname{Var}\left(X_{2}\right)
\end{aligned}
$$

2. (10) Since $A=A^{\prime}, A=R D R^{\prime}$ where R is an orthogonal matrix and $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$ by the spectral theorem. Then $\operatorname{tr}(A)=\operatorname{tr}\left((R D) R^{\prime}\right)=$ $\operatorname{tr}\left(R^{\prime}(R D)\right)=\operatorname{tr}\left(R R^{\prime} D\right)=\operatorname{tr}(D)=\lambda_{1}+\lambda_{2}>0$ and $\operatorname{det}(A)=\operatorname{det}\left(R D R^{\prime}\right)=$ $\operatorname{det}(R) \operatorname{det}(D) \operatorname{det}\left(R^{\prime}\right)=\operatorname{det}(D) \operatorname{det}(R)^{2}=\lambda_{1} \lambda_{2}>0$. Since $\lambda_{1} \lambda_{2}>0$, either (i) $\lambda_{1}>0$ and $\lambda_{2}>0$ or (ii) $\lambda_{1}<0$ and $\lambda_{2}<0$. The condition $\lambda_{1}+\lambda_{2}>0$ eliminates case (ii), so that both $\lambda_{1}>0$ and $\lambda_{2}>0$. This implies that A is positive definite. (There are several ways to do this problem.)
3. (20) The random column vector $X=\left(\begin{array}{lll}X_{1} & X_{2} & X_{3}\end{array}\right)^{\prime}$ has $E(X)=0$ and covariance matrix

$$
A=\operatorname{Cov}(X)=\left(\begin{array}{ccc}
3 & -4 & 1 \\
-4 & 10 & -2 \\
1 & -2 & 3
\end{array}\right)
$$

Let $Y=X_{1}+2 X_{2}+3 X_{3}$ and $Z=X_{2}+4 X_{3}$.
(i) If $A=\operatorname{Cov}(X)$, then $\operatorname{Var}\left(X_{i}\right)=A_{i i}$. Reading entries from the diagonal of $A, \operatorname{Var}\left(X_{1}\right)=A_{11}=3$ and $\operatorname{Var}\left(X_{2}\right)=A_{22}=10$.
(ii) Since $Y=v^{\prime} X$ for $v=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{\prime}$ and $Z=w^{\prime} X$ for $w=\left(\begin{array}{lll}0 & 1 & 4\end{array}\right)^{\prime}$

$$
\begin{aligned}
\operatorname{Var}(Y) & =\operatorname{Var}\left(v^{\prime} X\right)=v^{\prime} \operatorname{Cov}(X) v=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{rrr}
3 & -4 & 1 \\
-4 & 10 & -2 \\
1 & -2 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{r}
-2 \\
10 \\
6
\end{array}\right)=36
\end{aligned}
$$

$$
\operatorname{Var}(Z)=\operatorname{Var}\left(w^{\prime} X\right)=w^{\prime} \operatorname{Cov}(X) w=\left(\begin{array}{lll}
0 & 1 & 4
\end{array}\right)\left(\begin{array}{rcc}
3 & -4 & 1 \\
-4 & 10 & -2 \\
1 & -2 & 3
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
4
\end{array}\right)
$$

Ma 439- Linear Models - Fall 2010- October 19, 2010

$$
=\left(\begin{array}{lll}
0 & 1 & 4
\end{array}\right)\left(\begin{array}{r}
0 \\
2 \\
10
\end{array}\right)=42
$$

(iii)

$$
\begin{aligned}
& \operatorname{Cov}(Y, Z)=\operatorname{Cov}\left(\sum_{i=1}^{3} v_{i} X_{i}, \sum_{j=1}^{3} w_{j} X_{j}\right)=\sum_{i=1}^{3} \sum_{j=1}^{3} v_{i} w_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& \quad=v^{\prime} \operatorname{Cov}(X) w=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{rrr}
3 & -4 & 1 \\
-4 & 10 & -2 \\
1 & -2 & 3
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
4
\end{array}\right) \\
& \quad=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{r}
0 \\
2 \\
10
\end{array}\right)=34
\end{aligned}
$$

(iv)

$$
\operatorname{Cov}(W)=\left(\begin{array}{ll}
\operatorname{Cov}\left(X_{1}, X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{3}\right) \\
\operatorname{Cov}\left(X_{3}, X_{1}\right) & \operatorname{Cov}\left(X_{3}, X_{3}\right)
\end{array}\right)=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

4. (20) (i) If $Y=A X$ where A is 2×3 and X is 3×1 (that is, $X \in R^{3}$), then Y is 2×1 (that is, $Y \in R^{2}$).
(ii) $\mu_{Y}=E(Y)=A E(X)=A \mu_{X}$ and $C=\operatorname{Cov}(Y)=A \operatorname{Cov}(X) A^{\prime}$, so that

$$
\begin{aligned}
\mu_{Y} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{r}
5 \\
-3 \\
-2
\end{array}\right)=\binom{-7}{-7} \\
C & =\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 3 \\
0 & 3 & 5
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
2 & 1 \\
3 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{rr}
0 & 0 \\
13 & 8 \\
21 & 13
\end{array}\right) \\
& =\left(\begin{array}{ll}
89 & 55 \\
55 & 34
\end{array}\right)
\end{aligned}
$$

5. (20) (i) See Page 1 in HW2.1st (The SAS source file is HW2.sas.)
(ii) By definition (see for example Section 9 page 18 in the Multivariate Linear Models handout on the Math 439 Web site), $Q \approx W\left(6,40, I_{6}\right)$ if we can write $Q=\sum_{i=1}^{40} Z_{i} Z_{i}^{\prime}$ where $Z_{i}=\left(Z_{i 1}, \ldots, Z_{i 6}\right)^{\prime}$ are independent $N\left(0, I_{6}\right)$, or equivalently if $Q_{a b}=\sum_{i=1}^{40} Z_{i a} Z_{i b}$ where $\left\{Z_{i a}\right\}$ are independent realvalued $N(0,1)$ for $1 \leq a, b \leq 6$ and $1 \leq i \leq 40$. This is exactly how W was constructed.
(iii) See the bottom of Page 1 and the top of Page 2 in HW2.1st
(iv,v,vi) See Page 2 in HW2.1st

Ma 439- Linear Models - Fall 2010- October 19, 2010...................... 3
6. (20) (i) We reject H_{0} with $P<0.0001$. (See Page 5 in HW2.1st.)
(ii) $F=30.67$ with $d=4$ degrees of freedom in the numerator and $m+$ $n-2-d+1=19+20-2-4+1=34$ degrees of freedom in the denominator.
(iii) All four measurements $y_{1}, y_{2}, y_{3}, y_{4}$ are highly significantly different between the two beetle species. The P-values were

Variable	EqualVariance	Satterthwaite
y_{1}	0.0004	0.0005
y_{2}	0.0004	0.0004
y_{3}	<0.0001	<0.0001
y_{3}	<0.0001	<0.0001

