Obs	Sex	Income	Num
$\mathbf{1}$	M	Rich	20
$\mathbf{2}$	M	Poor	10
$\mathbf{3}$	F	Rich	80
$\mathbf{4}$	F	Poor	90

A simple $2 x 2$ table with 4 entries

(Two one-way tables followed by a $2 x 2$ table)

The FREQ Procedure

Sex	Frequency	Percent	Cumulative Frequency	Cumulative Percent
\mathbf{M}	30	15.00	30	15.00
\mathbf{F}	170	85.00	200	100.00

Income	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Rich	100	50.00	100	50.00
Poor	100	50.00	200	100.00

Frequency
Percent
Row Pct
Col Pct

Table of Sex by Income			
Sex	Income		
	Rich	Poor	Total
	20	10	30
	10.00	5.00	15.00
	66.67	33.33	
	20.00	10.00	
\mathbf{F}	80	90	170
	40.00	45.00	85.00
	47.06	52.94	
	80.00	90.00	
Total	100	100	200
	50.00	50.00	100.00

A simple $2 x 2$ table with 4 entries

(Two one-way tables followed by a $2 x 2$ table)

The FREQ Procedure

Statistics for Table of Sex by Income

Statistic	DF	Value	Prob
Chi-Square	1	3.9216	0.0477
Likelihood Ratio Chi-Square	1	3.9866	0.0459
Continuity Adj. Chi-Square	1	3.1765	0.0747
Mantel-Haenszel Chi-Square	1	3.9020	0.0482
Phi Coefficient		0.1400	
Contingency Coefficient		0.1387	
Cramer's V		0.1400	

Fisher's Exact Test	
Cell $(\mathbf{1 , 1})$ Frequency (\mathbf{F})	20
Left-sided Pr $<=$ F	0.9859
Right-sided Pr >= F	0.0367
Table Probability (P)	0.0226
Two-sided Pr <= P	0.0734

Sample Size $=200$

The data as SAS sees it:
(Ignoring variables Num1-Num5)

Obs	Sex	Income	Count
$\mathbf{1}$	F	1	10
$\mathbf{2}$	F	2	12
$\mathbf{3}$	F	3	19
$\mathbf{4}$	F	4	17
$\mathbf{5}$	F	5	20
$\mathbf{6}$	M	1	20
$\mathbf{7}$	M	2	15
$\mathbf{8}$	M	3	12
$\mathbf{9}$	M	4	14
$\mathbf{1 0}$	M	5	10

NOTE that the P-value for the (trend) Mantel-Haenszel test is MUCH MORE significant than the others.

Can you see why?

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Sex by Income						
Sex	Income					
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Total
	10	12	19	17	20	78
	6.71	8.05	12.75	11.41	13.42	52.35
	12.82	15.38	24.36	21.79	25.64	
	33.33	44.44	61.29	54.84	66.67	
\mathbf{M}	20	15	12	14	10	71
	13.42	10.07	8.05	9.40	6.71	47.65
	28.17	21.13	16.90	19.72	14.08	
	66.67	55.56	38.71	45.16	33.33	
Total	30	27	31	31	30	149
	20.13	18.12	20.81	20.81	20.13	100.00

Statistics for Table of Sex by Income

Statistic	DF	Value	Prob
Chi-Square	4	8.5610	0.0731
Likelihood Ratio Chi-Square	4	8.6861	0.0694
Mantel-Haenszel Chi-Square	1	7.0135	0.0081
Phi Coefficient		0.2397	
Contingency Coefficient		0.2331	
Cramer's V		0.2397	

Sample Size $=149$

The same $2 x 5$ table using a SAS array
Note that this is the same as before.

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct

Table of Sex by Income						
Sex	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Total
	\mathbf{F}	10	12	19	17	20
	6.71	8.05	12.75	11.41	13.42	72.35
	12.82	15.38	24.36	21.79	25.64	
	33.33	44.44	61.29	54.84	66.67	
	20	15	12	14	10	71
	13.42	10.07	8.05	9.40	6.71	47.65
	28.17	21.13	16.90	19.72	14.08	
	66.67	55.56	38.71	45.16	33.33	
Total	30	27	31	31	30	149
	20.13	18.12	20.81	20.81	20.13	100.00

The TTEST Procedure

Statistics														
Variable	Sex	\mathbf{N}	Lower CL Mean	Mean	Upper CL Mean	Lower CL Std Dev	Std Dev	Upper CL Std Dev	Std Err	Minimum	Maximum			
Income	F	78	3.0154	3.3205	3.6256	1.1691	1.3531	1.6066	0.1532	1	5			
Income	M	71	2.3662	2.7042	3.0423	1.2258	1.4282	1.7113	0.1695	1	5			
Income	Diff (1-2)		0.1659	0.6163	1.0667	1.2471	1.3894	1.5686	0.2279					

T-Tests						
Variable	Method	Variances	DF	t Value	Pr > \|t	
Income	Pooled	Equal	147	2.70	0.0077	
Income	Satterthwaite	Unequal	144	2.70	0.0078	

Equality of Variances					
Variable	Method	Num DF	Den DF	F Value	Pr > F
Income	Folded F	70	77	1.11	0.6420

