Ma 494 - Theoretical Statistics

Problem Set \#3 - Due February 22, 2009

Prof. Sawyer - Washington University

1. Problem 5.5.6 page 398. (Hints: The density $f_{Y}(y, \theta)$ is gamma with parameters $\alpha=r$ equal to an integer and $\beta=\lambda=1 / \theta$. See Section 4.6.)
2. Problem 5.6.2 page 405.
(Hint for part (b): Assume $S(X)$ for $X=\left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic for θ and $L(\theta, X)$ is the likelihood. Then, if $S(X)=S(Y)$ for two samples X and $Y=\left(Y_{1}, \ldots, Y_{n}\right)$, the ratio $L(\theta, X) / L(\theta, Y)$ does not depend on θ. This can be used to show that particular statistics $S_{0}(X)$ are not sufficient.)
3. (Like Problem 5.6.8 page 405.) An exponential family is a density $f(x, \theta)$ that can be written in the form

$$
\begin{equation*}
f(x, \theta)=e^{K(x) p(\theta)+q(\theta)} A(x) \tag{1}
\end{equation*}
$$

Show that $S\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} K\left(X_{i}\right)$ is a sufficient statistic for θ.
4. (Like Problem 5.6 .10 page 406.) Let Y_{1}, \ldots, Y_{n} be an independent sample from the density $f(y, \theta)=\theta /(1+y)^{\theta+1}$ for $y>0$ and $\theta>0$.
(a) Find a sufficient statistic for θ.
(b) Show that $f(y, \theta)$ can be written as an exponential family as in (1) and find suitable functions $K(x), p(\theta), q(\theta)$, and $A(x)$.
5. Let X_{1}, \ldots, X_{n} be an independent sample from $f(x, \theta)$ where

$$
f(x, \theta)=(1 / 2) I_{(\theta-1, \theta+1)}(x)= \begin{cases}1 / 2 & \text { if } \theta-1<x<\theta+1 \tag{2}\\ 0 & \text { for other values of } x\end{cases}
$$

Show that the vector-valued random variable $S(X)=\left(X_{\min }, X_{\max }\right)$ is a sufficient statistic for θ. That is, $L\left(\theta, X_{1}, \ldots, X_{n}\right)=g\left(X_{\min }, X_{\max }, \theta\right) h\left(X_{1}, \ldots, X_{n}\right)$ for functions $g\left(y_{1}, y_{2}, \theta\right)$ and $h(x)$, and find suitable functions g and h.

Remarks: If a likelihood $L(\theta, X)$ is maximized on an interval, then any statistic $S(X)$ with values in that interval is a maximum likelihood estimator. Using this, one can show that $S(X)=\left(X_{\min }+X_{\max }\right) / 2$ is a maximum likelihood estimator of θ.
(Warning: Both $f(x, \theta)$ and $L(\theta, X)$ take on only the values 0 and 1 , so that setting $(\partial / \partial \theta) \log L(\theta, X)=0$ and solving for θ may not be helpful. Either work with inequalities or with indicator functions $I_{\text {(set) }}(x)$ as in equation (2). Note that $I_{(\theta-1, \theta+1)}(x)=I_{(x-1, x+1)}(\theta)$, since both are equal to one if and only if $|x-\theta|<1$.)

