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1. By the hint and Definition 4.6.2 p329, Yi are gamma distributed with param-
eters r and λ = 1/θ, in the notation of Section 4.6 p329. Thus by Theorem 4.6.3
p330, E(Yi) = r/λ = rθ and Var(Yi) = r/λ2 = rθ2.

(i) Since E(Yj) = rθ, E
(
(1/r)Y

)
= (1/r)(1/n)

∑n
j=1 E(Yj) =

(
1/(rn)

)
nrθ = θ

and (1/r)Y is an unbiased estimator of θ.
(ii) Since log f(Y, θ) = − log

(
(r− 1)!

)− r log(θ) + (r− 1) log(Y )− Y/θ, the jth

score is

S(Yj , θ) =
∂

∂θ
log f(Yj , θ) = −r

θ
+

Yj

θ2
=

Yj − rθ

θ2

The Fisher information I(θ) = r/θ2 by arguing EITHER I(θ) = Var
(
S(Yj , θ)

)
=

Var(Y/θ2) = Var(Y )/θ4 = rθ2/θ4 = r/θ2 OR ELSE by arguing

T (Yj , θ) =
∂2

∂θ2
log f(Yj , θ) =

r

θ2
− 2Yj

θ3
= −2Yj − rθ

θ3

Then I(θ) = −E
(
T (Yj , θ)

)
=

(
2E(Yj)− rθ

)
/θ3 = rθ/θ3 = r/θ2. Thus the Cramér-

Rao lower bound is 1/
(
nI(θ)

)
= θ2/(nr). In comparison,

Var
(

1
r
Y

)
=

1
n

1
r2

Var(Yj) =
rθ2

nr2
=

θ2

nr

Since this attains the Cramér-Rao lower bound, (1/r)Y is a minimum variance
unbiased estimator of θ.

2. (a) The first step is to write f(y, θ) = e−(y−θ)I(θ,∞)(y). Then the likelihood is

L(θ, Y1, . . . , Yn) =
n∏

j=1

e−(Yj−θ)I(θ,∞)(Yj) = exp


−

n∑

j=1

(Yj − θ)




n∏

j=1

I(θ,∞)(Yj)

The product of indicator functions
∏n

j=1 I(θ,∞)(Yj) equals zero unless θ < Yj < ∞
for 1 ≤ j ≤ n, or equivalently unless θ < Ymin < ∞. Hence we can write the
likelihood as

L(θ, Y1, . . . , Yn) = enθI(θ,∞)(Ymin) exp


−

n∑

j=1

Yj


 = g(θ, Ymin)A(Y1, . . . , Yn)
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for g(θ, y) = enθI(θ,∞)(y) and A(y1, . . . , yn) = exp
(
−∑n

j=1 Yj

)
. This implies that

Ymin is a sufficient statistic for θ.
(b) It follows from the last displayed equation that L(θ, Y1, . . .) > 0 if θ < Ymin

and L(θ, Y1, . . .) = 0 if Ymin ≤ θ. If Ymax were a sufficient statistic, then

L(θ, Y1, . . . , Yn) = h(θ, Ymax)B(Y1, . . . , Yn)

for functions h(θ, y) and B(y1, . . . , yn). Since we can find θ < Ymin for any Y =
(Y1, . . . , Yn) ∈ Rn, it follows that B(Y ) > 0 for all Y ∈ Rn. Thus h(θ, Ymax) > 0 if
θ < Ymin and h(θ, Ymax) = 0 if Ymin ≤ θ. Now assume n = 2, Y1 < Y2, and fix θ.
Then Ymin = Y1, Ymax = Y2, and h(θ, Ymax) = h(θ, Y2) as long as Y1 < Y2. Thus
h(θ, Y2) = 0 if Y1 < θ < Y2 but h(θ, Y2) > 0 if θ < Y1 < Y2, which is a contradiction.
Thus Ymax cannot be a sufficient statistic for θ.

3. If f(x, θ) = eK(x)p(θ)+q(θ)A(x), the likelihood is

L(θ,X1, . . . , Xn) =
n∏

j=1

f(Xj , θ) =
n∏

j=1

exp
(

K(Xj)p(θ) + q(θ
)

A(Xj)

= exp
( n∑

j=1

(
K(Xj)p(θ) + q(θ)

)) n∏

j=1

A(Xj)

= exp
(

nq(θ) +
( n∑

j=1

K(Xj)
)

p(θ)
) n∏

j=1

A(Xj)

= g

(
θ,

n∑

j=1

K(Xj)
)

B(X1, . . . , Xn)

for g(θ, y) = enq(θ)+yp(θ) and B(x1, . . . , xn) =
∏n

j=1 A(xj). This implies that
S(X) =

∑n
j=1 K(Xj) is a sufficient statistic for θ.

4. (a) If f(y, θ) = θ/(1 + y)θ+1, the likelihood is

L(θ, Y1, . . . , Yn) =
n∏

j=1

θ

(1 + Yj)θ+1
= θn

( n∏

j=1

1
1 + Yj

)θ+1

=
θn

(∏n
j=1(1 + Yj)

)θ+1

This implies that S(Y ) =
∏n

j=1(1 + Yj) is a sufficient statistic for θ.
(b) Writing x in place of y,

f(x, θ) = exp
(
log(1 + x)(−θ − 1) + log θ

)

This is of the form f(x, θ) = eK(x)p(θ)+q(θ)A(x) for K(x) = log(1+x), p(θ) = −θ−1,
and q(θ) = log θ. Since

∑n
j=1 K(Xj) =

∑n
j=1 log(1 + Xj) = log

(∏n
j=1(1 + Xj)

)
,

this is consistent with part (a).
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5. If f(x, θ) = (1/2)I(θ−1,θ+1)(x), the likelihood is

L(θ, X1, . . . , Xn) =
n∏

j=1

f(Xj , θ) =
1
2n

n∏

j=1

I(θ−1,θ+1)(Xj)

The likelihood is zero unless θ − 1 < Xj < θ + 1 for 1 ≤ j ≤ n, or equivalently
unless θ − 1 < Xmin ≤ Xmax < θ + 1. Since Xmin ≤ Xmax, this is equivalent to
Xmax − 1 < θ and θ < Xmin + 1. Thus

L(θ,X1, . . . , Xn) =
1
2n

I(Xmax−1,Xmin+1)(θ) = g(Xmin, Xmax, θ)

for g(x1, x2, θ) = (1/2n)I(x2−1,x1+1)(θ). Thus (Xmin, Xmax) is a vector-valued suffi-
cient statistic for θ.

Remarks: (1) Since θ−1 < Xj < θ+1 for all j, it follows that Xmax−Xmin < 2
and Xmax− 1 < Xmin + 1. Thus the arguments in the indicator function in the last
displayed equation are not a typo.

(2) Since L(θ, X1, . . . , Xn) is always either 0 or 1/2n, a statistic T (X1, . . . , Xn)
is a maximum-likelihood estimator as long as Xmax−1 < T (X1, . . . , Xn) < Xmin+1
for all X = (X1, . . . , Xn) ∈ Rn. Since any nonempty interval I = (a, b) contains the
average of its endpoints (that is, (a+b)/2 ∈ I), it follows that T (X) =

(
(Xmax − 1)+

(Xmin + 1)
)
/2 = (Xmin + Xmax)/2 is a maximum likelihood estimator for θ.


