Ma 494 — Theoretical Statistics

Solutions for Problem Set #3 — Due February 22, 2010

Prof. Sawyer — Washington University

1. By the hint and Definition 4.6.2 p329, Y_i are gamma distributed with parameters r and $\lambda = 1/\theta$, in the notation of Section 4.6 p329. Thus by Theorem 4.6.3 p330, $E(Y_i) = r/\lambda = r\theta$ and $\operatorname{Var}(Y_i) = r/\lambda^2 = r\theta^2$.

(i) Since $E(Y_j) = r\theta$, $E((1/r)\overline{Y}) = (1/r)(1/n)\sum_{j=1}^n E(Y_j) = (1/(rn))nr\theta = \theta$ and $(1/r)\overline{Y}$ is an unbiased estimator of θ .

(ii) Since $\log f(Y,\theta) = -\log((r-1)!) - r\log(\theta) + (r-1)\log(Y) - Y/\theta$, the jth score is

$$S(Y_j, \theta) = \frac{\partial}{\partial \theta} \log f(Y_j, \theta) = -\frac{r}{\theta} + \frac{Y_j}{\theta^2} = \frac{Y_j - r\theta}{\theta^2}$$

The Fisher information $I(\theta) = r/\theta^2$ by arguing EITHER $I(\theta) = \operatorname{Var}(S(Y_j, \theta)) = \operatorname{Var}(Y/\theta^2) = \operatorname{Var}(Y)/\theta^4 = r\theta^2/\theta^4 = r/\theta^2$ OR ELSE by arguing

$$T(Y_j,\theta) = \frac{\partial^2}{\partial\theta^2}\log f(Y_j,\theta) = \frac{r}{\theta^2} - \frac{2Y_j}{\theta^3} = -\frac{2Y_j - r\theta}{\theta^3}$$

Then $I(\theta) = -E(T(Y_j, \theta)) = (2E(Y_j) - r\theta)/\theta^3 = r\theta/\theta^3 = r/\theta^2$. Thus the Cramér-Rao lower bound is $1/(nI(\theta)) = \theta^2/(nr)$. In comparison,

$$\operatorname{Var}\left(\frac{1}{r}\overline{Y}\right) = \frac{1}{n}\frac{1}{r^2}\operatorname{Var}(Y_j) = \frac{r\theta^2}{nr^2} = \frac{\theta^2}{nr}$$

Since this attains the Cramér-Rao lower bound, $(1/r)\overline{Y}$ is a minimum variance unbiased estimator of θ .

2. (a) The first step is to write $f(y,\theta) = e^{-(y-\theta)}I_{(\theta,\infty)}(y)$. Then the likelihood is

$$L(\theta, Y_1, \dots, Y_n) = \prod_{j=1}^n e^{-(Y_j - \theta)} I_{(\theta, \infty)}(Y_j) = \exp\left(-\sum_{j=1}^n (Y_j - \theta)\right) \prod_{j=1}^n I_{(\theta, \infty)}(Y_j)$$

The product of indicator functions $\prod_{j=1}^{n} I_{(\theta,\infty)}(Y_j)$ equals zero unless $\theta < Y_j < \infty$ for $1 \leq j \leq n$, or equivalently unless $\theta < Y_{\min} < \infty$. Hence we can write the likelihood as

$$L(\theta, Y_1, \dots, Y_n) = e^{n\theta} I_{(\theta, \infty)}(Y_{\min}) \exp\left(-\sum_{j=1}^n Y_j\right) = g(\theta, Y_{\min}) A(Y_1, \dots, Y_n)$$

for $g(\theta, y) = e^{n\theta} I_{(\theta,\infty)}(y)$ and $A(y_1, \ldots, y_n) = \exp\left(-\sum_{j=1}^n Y_j\right)$. This implies that Y_{\min} is a sufficient statistic for θ .

(b) It follows from the last displayed equation that $L(\theta, Y_1, \ldots) > 0$ if $\theta < Y_{\min}$ and $L(\theta, Y_1, \ldots) = 0$ if $Y_{\min} \leq \theta$. If Y_{\max} were a sufficient statistic, then

$$L(\theta, Y_1, \dots, Y_n) = h(\theta, Y_{\max})B(Y_1, \dots, Y_n)$$

for functions $h(\theta, y)$ and $B(y_1, \ldots, y_n)$. Since we can find $\theta < Y_{\min}$ for any Y = $(Y_1,\ldots,Y_n)\in \mathbb{R}^n$, it follows that B(Y)>0 for all $Y\in \mathbb{R}^n$. Thus $h(\theta,Y_{\max})>0$ if $\theta < Y_{\min}$ and $h(\theta, Y_{\max}) = 0$ if $Y_{\min} \leq \theta$. Now assume $n = 2, Y_1 < Y_2$, and fix θ . Then $Y_{\min} = Y_1$, $Y_{\max} = Y_2$, and $h(\theta, Y_{\max}) = h(\theta, Y_2)$ as long as $Y_1 < Y_2$. Thus $h(\theta, Y_2) = 0$ if $Y_1 < \theta < Y_2$ but $h(\theta, Y_2) > 0$ if $\theta < Y_1 < Y_2$, which is a contradiction. Thus Y_{max} cannot be a sufficient statistic for θ .

3. If $f(x,\theta) = e^{K(x)p(\theta) + q(\theta)}A(x)$, the likelihood is

$$L(\theta, X_1, \dots, X_n) = \prod_{j=1}^n f(X_j, \theta) = \prod_{j=1}^n \exp\left(K(X_j)p(\theta) + q(\theta)A(X_j)\right)$$
$$= \exp\left(\sum_{j=1}^n \left(K(X_j)p(\theta) + q(\theta)\right)\right) \prod_{j=1}^n A(X_j)$$
$$= \exp\left(nq(\theta) + \left(\sum_{j=1}^n K(X_j)\right)p(\theta)\right) \prod_{j=1}^n A(X_j)$$
$$= g\left(\theta, \sum_{j=1}^n K(X_j)\right) B(X_1, \dots, X_n)$$

for $g(\theta, y) = e^{nq(\theta) + yp(\theta)}$ and $B(x_1, \dots, x_n) = \prod_{j=1}^n A(x_j)$. This implies that $S(X) = \sum_{j=1}^{n} K(X_j)$ is a sufficient statistic for θ .

4. (a) If $f(y,\theta) = \theta/(1+y)^{\theta+1}$, the likelihood is

$$L(\theta, Y_1, \dots, Y_n) = \prod_{j=1}^n \frac{\theta}{(1+Y_j)^{\theta+1}} = \theta^n \left(\prod_{j=1}^n \frac{1}{1+Y_j}\right)^{\theta+1} = \frac{\theta^n}{\left(\prod_{j=1}^n (1+Y_j)\right)^{\theta+1}}$$

This implies that $S(Y) = \prod_{i=1}^{n} (1+Y_i)$ is a sufficient statistic for θ .

(b) Writing x in place of y,

$$f(x,\theta) = \exp\left(\log(1+x)(-\theta-1) + \log\theta\right)$$

This is of the form $f(x,\theta) = e^{K(x)p(\theta) + q(\theta)}A(x)$ for $K(x) = \log(1+x), p(\theta) = -\theta - 1$, and $q(\theta) = \log \theta$. Since $\sum_{j=1}^{n} K(X_j) = \sum_{j=1}^{n} \log(1 + X_j) = \log(\prod_{j=1}^{n} (1 + X_j))$, this is consistent with part (a).

5. If $f(x,\theta) = (1/2)I_{(\theta-1,\theta+1)}(x)$, the likelihood is

$$L(\theta, X_1, \dots, X_n) = \prod_{j=1}^n f(X_j, \theta) = \frac{1}{2^n} \prod_{j=1}^n I_{(\theta-1, \theta+1)}(X_j)$$

The likelihood is zero unless $\theta - 1 < X_j < \theta + 1$ for $1 \leq j \leq n$, or equivalently unless $\theta - 1 < X_{\min} \leq X_{\max} < \theta + 1$. Since $X_{\min} \leq X_{\max}$, this is equivalent to $X_{\max} - 1 < \theta$ and $\theta < X_{\min} + 1$. Thus

$$L(\theta, X_1, \dots, X_n) = \frac{1}{2^n} I_{(X_{\max} - 1, X_{\min} + 1)}(\theta) = g(X_{\min}, X_{\max}, \theta)$$

for $g(x_1, x_2, \theta) = (1/2^n) I_{(x_2-1, x_1+1)}(\theta)$. Thus (X_{\min}, X_{\max}) is a vector-valued sufficient statistic for θ .

Remarks: (1) Since $\theta - 1 < X_j < \theta + 1$ for all j, it follows that $X_{\max} - X_{\min} < 2$ and $X_{\max} - 1 < X_{\min} + 1$. Thus the arguments in the indicator function in the last displayed equation are not a typo.

(2) Since $L(\theta, X_1, \ldots, X_n)$ is always either 0 or $1/2^n$, a statistic $T(X_1, \ldots, X_n)$ is a maximum-likelihood estimator as long as $X_{\max} - 1 < T(X_1, \ldots, X_n) < X_{\min} + 1$ for all $X = (X_1, \ldots, X_n) \in \mathbb{R}^n$. Since any nonempty interval I = (a, b) contains the average of its endpoints (that is, $(a+b)/2 \in I$), it follows that $T(X) = ((X_{\max} - 1) + (X_{\min} + 1))/2 = (X_{\min} + X_{\max})/2$ is a maximum likelihood estimator for θ .