Ma 494 - Theoretical Statistics

Solutions for Problem Set \#4 - Due March 3, 2010

Prof. Sawyer - Washington University
NOTE: 5 problems on 2 pages.

1. Note $P\left(\bar{X}_{n} \in(2.5,3.5)\right)=P(|\bar{X}-3|<0.50) \geq 0.99$ is equivalent to $P(|\bar{X}-3|>$ $0.50) \leq 0.01$. Since X_{i} are $N(3,1), \bar{X}$ is $N(3,1 / n)$, so that $\sqrt{n}(\bar{X}-3) \approx Z$ where Z is standard normal. Hence

$$
\begin{aligned}
P(|\bar{X}-3|>0.50) & =P(\sqrt{n}|\bar{X}-3|>0.50 \sqrt{n}) \\
& =P(|Z|>0.50 \sqrt{n})=2 P(Z>0.50 \sqrt{n}) \leq 0.01
\end{aligned}
$$

if and only if $P(Z>0.50 \sqrt{n}) \leq 0.005$. By Table A1 pages $851-852$, this is equivalent to $0.50 \sqrt{n} \geq 2.575$ or $n \geq(2.575 / 0.50)^{2}=5.150^{2}=26.53$, or $n \geq 27$ since n must be an integer.
2. Here X_{1}, \ldots, X_{n} for $n=7$ are independent $N\left(\mu, 1.2^{2}\right)$ with $\bar{X}=0.80$. Thus $Z=(\bar{X}-\mu) /(1.2 / \sqrt{7})$ is standard normal. Since $P(-1.960<Z<1.960)=0.95$, it follows as in Example 5.3.1, that

$$
\left(0.80-1.960 \frac{1.2}{\sqrt{7}}, 0.80+1.960 \frac{1.2}{\sqrt{7}}\right)=(-0.0890,1.6890)
$$

is a symmetric two-sided 95% confidence interval for μ. Since

$$
\begin{aligned}
& P(Z<1.6445)=0.95=P((\bar{X}-\mu) /(1.2 / \sqrt{7})<1.6445) \\
& \quad=P((\mu-\bar{X}) /(1.2 / \sqrt{7})>-1.6445)=P\left(\mu>\bar{X}-1.6445 \frac{1.2}{\sqrt{7}}\right)=0.95
\end{aligned}
$$

it follows similarly that $(0.80-1.6445(1.2 / \sqrt{7}), \infty)=(0.0541, \infty)$ is a lower 95% one-sided confidence interval for μ. Thus, in these senses, with 95% confidence, we can say that $\mu>0$, but not that $\mu \neq 0$.
3. Let p be the true proportion of unsatisfactory tuna salads at these establishments. Then $\widehat{p}=179 / 220=0.8136$ where \widehat{p} is approximately normal with distribution $N(p, p(1-p) / n)$. An approximate 90% (not 95%) symmetric confidence interval is

$$
\begin{aligned}
& \left(\widehat{p}-1.6445 \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}, \widehat{p}+1.6445 \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\right) \\
& =(0.8136-0.0432,0.8136+0.0432)=(0.7705,0.8568)
\end{aligned}
$$

4. Let N be the number of votes that Tom Foley obtained before the $n=14,000$ absentee votes are counted and Q be the number of votes that he obtains from the absentee ballots. Let p be the probability that an individual absentee votes for Foley. We need the smallest value of p so that Foley has a 20% chance of winning the election.

If Foley obtained N votes among the regular ballots, and the absentee ballots are split between Foley and Nethercut (that is, no blank or spoiled ballots and noone voted for a third candidate, such as themselves), then the final number of votes for the two candidates is

$$
\begin{array}{ll}
\text { Tom Foley } & N+Q \\
\text { George Nethercut } & N+2174+14,000-Q
\end{array}
$$

Foley will win if and only if $Q>2174+14000-Q$ or $2 Q>16174$ or $Q>8087$. Since p will be reasonably close to $1 / 2$, we can use the conservative approximation $Q / n \approx N(p, 1 /(4 n))$. Thus $Q \approx N(n p, n / 4)$ and $Z=(Q-n p) / \sqrt{n / 4}$ is approximately standard normal. Hence we need

$$
P(Q>8087)=P(Q-n p>8087-n p)=P(Z>(8087-n p) / \sqrt{n / 4})=0.20
$$

Since $P(Z>0.8416)=0.20$, we solve $0.8416=(8087-14000 p) / \sqrt{14000 / 4}$ or

$$
p=(8087-0.8416 \times \sqrt{14000 / 4}) / 14000=0.5741
$$

This is only slightly smaller than the actual fraction of absentee ballots $p_{0}=$ $8087 / 14000=0.5776$ that Foley needs to win.
5. It is sufficient to find the smallest n such that $|(X / n)-p|>0.05$ with probability 0.01 or smaller for any p. Here X is $\operatorname{binomial} \operatorname{bin}(n, p)$ and we can use the conservative approximation $(X / n) \approx N(p, 1 /(4 n))$, so that the distribution of $(X / n)-p \approx N(0,1 /(4 n))$ does not depend on p. Thus we need

$$
\begin{aligned}
P(|(X / n)-p|>0.05) & =P(\sqrt{4 n}|(X / n)-p|>0.05 \sqrt{4 n}) \\
& =P(|Z|>0.05 \sqrt{4 n})=2 P(Z>0.05 \sqrt{4 n})<0.01
\end{aligned}
$$

Since $P(Z>2.5758)=0.005$, we need $0.05 \sqrt{4 n}>2.5758$ or $n>(2.5758 / 0.10)^{2}=$ $(25.758)^{2}=663.47$. Thus we must have $n \geq 664$.

