Ma 494 - Theoretical Statistics

Solutions for Problem Set \#5 - Due March 24, 2010

> Prof. Sawyer - Washington University

NOTE: 5 problems on 4 pages.

1. (i) $\widehat{p}=M / N=0.94$ for $N=1000$ simulated samples of size n. By Theorem 5.3.1 on page 369 of the text (with $X=M$ and $n=N$), a symmetric 95% confidence interval for the true coverage probability p is

$$
\begin{aligned}
\left(\widehat{p}-1.960 \sqrt{\frac{\widehat{p}(1-\widehat{p})}{1000}}, \widehat{p}+1.960 \sqrt{\frac{\widehat{p}(1-\widehat{p})}{1000}}\right) & =(0.94-0.015,0.94+0.015) \\
& =(0.925,0.955)
\end{aligned}
$$

This contains $p=0.95$, so that $M / N=0.94$ is consistent with $p=0.95$.
(ii) If $N=1000$ is replaced by $N=10,000$, the confidence interval is

$$
\begin{aligned}
\left(\widehat{p}-1.960 \sqrt{\frac{\widehat{p}(1-\widehat{p})}{10,000}}, \widehat{p}+1.960 \sqrt{\frac{\widehat{p}(1-\widehat{p})}{10,000}}\right) & =(0.94-0.005,0.94+0.005) \\
& =(0.935,0.945)
\end{aligned}
$$

This DOES NOT contain $p=0.95$, so that $M / N=0.94$ is NOT consistent with $p=0.95$.
2. Since Y has a gamma distribution with parameters (r, θ) (see Definition 4.6.2 on page 329 in the text), the density of Y given θ is

$$
f_{Y}(y, \theta)=\frac{\theta^{r}}{\Gamma(r)} y^{r-1} e^{-\theta y}
$$

Note that r is assumed fixed. The prior distribution on θ is gamma with parameters (s, μ), so that the prior density (for θ) is

$$
\pi_{0}(\theta)=\frac{\mu^{s}}{\Gamma(s)} \theta^{r-1} e^{-\mu \theta}
$$

Thus the Bayesian joint probability density of (θ, y) is

$$
\begin{align*}
f_{\Theta, Y}(\theta, y) & =\pi_{0}(\theta) f_{Y}(y, \theta)=\frac{\mu^{s}}{\Gamma(s)} \theta^{s-1} e^{-\mu \theta} \frac{\theta^{r}}{\Gamma(r)} y^{r-1} e^{-\theta y} \\
& =\frac{\mu^{s} y^{r-1}}{\Gamma(s) \Gamma(r)} \theta^{r+s-1} e^{-\theta(\mu+y)}=C(y) \theta^{r+s-1} e^{-\theta(\mu+y)} \tag{1}
\end{align*}
$$

(i) By definition, the Bayesian posterior distribution given $y=Y$ is the twodimensional density in (1) conditional on $y=Y$. By Definition 3.11.1 page 250 in the text, this conditional density is of the same form

$$
\begin{equation*}
\pi_{1}(\theta \mid Y)=f_{\Theta \mid Y}(\theta \mid Y)=C_{1}(Y) \theta^{r+s-1} e^{-\theta(\mu+Y)} \tag{2}
\end{equation*}
$$

where $\int \pi_{1}(\theta \mid Y) d \theta=1$. The form of (2) as a function of θ indicates that $\pi_{1}(\theta \mid Y)$ is a gamma density with parameters $(r+s, \mu+Y)$ (see Definition 4.6.2 page 329). Since $\int \pi_{1}(\theta \mid Y) d \theta=1$, it follows that $C_{1}(Y)=(\mu+Y)^{r+s} / \Gamma(r+s)$.
(ii) By Theorem 5.8 .1 page 420 in the text, the Bayes estimator $\widehat{\theta}_{B}$ of θ for one observation Y with square-loss risk is the same as the mean of the posterior density $\pi(\theta \mid Y)$. By Theorem 4.6.3 page 330 in the text, if W has a gamma distribution with parameters (t, λ) then $E(W)=t / \lambda$ and $\operatorname{Var}(W)=t / \lambda^{2}$. By (2), the distribution of Θ given Y is gamma with parameters $(r+s, \mu+Y)$. Thus $\widehat{\theta}_{B}=\int \theta \pi_{1}(\theta \mid Y) d \theta=E(\Theta \mid Y)=t / \lambda=(r+s) /(\mu+Y)$.
3. (i) The likelihood is

$$
L\left(p, Y_{1}, \ldots, Y_{n}\right)=\prod_{j=1}^{n}(1-p)^{Y_{j}-1} p=(1-p)^{\sum_{j=1}^{n}\left(Y_{j}-1\right)} p^{n}
$$

Thus if $Y=\left(Y_{1}, \ldots, Y_{n}\right)$

$$
\begin{align*}
& \log L(p, Y)=\left(\left(\sum_{j=1}^{n} Y_{j}\right)-n\right) \log (1-p)+n \log (p) \\
& \frac{\partial}{\partial p} \log L(p, Y)=\frac{n}{p}-\frac{\left(\sum_{j=1}^{n} Y_{j}\right)-n}{1-p} \tag{3}
\end{align*}
$$

Setting the expression in (3) equal to zero leads to

$$
p\left(\left(\sum_{j=1}^{n} Y_{j}\right)-n\right)=n(1-p)=p\left(\sum_{j=1}^{n} Y_{j}\right)-n p=n-n p
$$

Thus the maximum likelihood estimator is

$$
\begin{equation*}
\widehat{p}=\frac{n}{\sum_{j=1}^{n} Y_{j}}=\frac{1}{\bar{Y}} \tag{4}
\end{equation*}
$$

where $\bar{Y}=(1 / n) \sum_{j=1}^{n} Y_{j}$. Since $Y_{j} \geq 1$ for all $j, \bar{Y} \geq 1$ and $0 \leq \widehat{p} \leq 1$, as expected.
(ii) Since $f(y, p)=(1-p)^{y-1} p$ for one observation, it follows from (3) with $n=1$ that

$$
\begin{equation*}
\frac{\partial}{\partial p} \log f(Y, p)=\frac{1}{p}-\frac{Y-1}{1-p}, \quad-\frac{\partial^{2}}{\partial p^{2}} \log f(Y, p)=\frac{1}{p^{2}}+\frac{Y-1}{(1-p)^{2}} \tag{5}
\end{equation*}
$$

By Theorem 4.4.1 on page 318 of the text, $E(Y)=1 / p$. (This also follows from (5) and $E((\partial / \partial p) \log f(Y, p))=0$.) Thus by (5), the Fisher information is

$$
\begin{align*}
I(f, p) & =-E\left(\frac{\partial^{2}}{\partial p^{2}} \log f(Y, p)\right)=\frac{1}{p^{2}}+\frac{E(Y)-1}{(1-p)^{2}} \\
& =\frac{1}{p^{2}}+\frac{1-p}{p(1-p)^{2}}=\frac{1}{p}\left(\frac{1}{p}+\frac{1}{1-p}\right)=\frac{1}{p^{2}(1-p)} \tag{6}
\end{align*}
$$

By equation (5.6) in the Math 494 notes,

$$
\left(\widehat{p}-\frac{1.96}{\sqrt{n I(f, \widehat{p})}}, \quad \widehat{p}+\frac{1.96}{\sqrt{n I(f, \widehat{p})}}\right)
$$

is an asymptotic central 95% confidence interval for p. By (4) and (6), $\widehat{p}=1 / \bar{Y}$ and

$$
\frac{1}{n I(f, \widehat{p})}=\frac{\widehat{p}^{2}(1-\widehat{p})}{n}=\frac{\bar{Y}-1}{n \bar{Y}^{3}}
$$

By assumption, $\bar{Y}=3$ and $n=100$. Thus the asymptotic 95% confidence interval for p is

$$
\left(\frac{1}{\bar{Y}}-1.960 \sqrt{\frac{\bar{Y}-1}{n \bar{Y}^{3}}}, \quad \frac{1}{\bar{Y}}+1.960 \sqrt{\frac{\bar{Y}-1}{n \bar{Y}^{3}}}\right)=(0.2800,3866)
$$

4. Under hypothesis H_{0}, the Y_{i} are normally distributed $N\left(95,15^{2}\right)$ so that \bar{Y} is $N\left(95,15^{2} / 22\right)$. If λ satisfies $\alpha=P(\bar{Y} \geq \lambda)=0.06$, then

$$
P\left(\frac{\bar{Y}-95}{\sqrt{15^{2} / 22}} \geq \frac{\lambda-95}{\sqrt{15^{2} / 22}}\right)=P\left(Z \geq \frac{\lambda-95}{\sqrt{15^{2} / 22}}\right)=0.06
$$

where Z is standard normal $(N(0,1))$. This implies $(\lambda-95) / \sqrt{15^{2} / 22}=1.555$ by Table A. 1 and

$$
\lambda=1.555 \sqrt{\frac{15^{2}}{22}}+95=99.97
$$

Thus, values of $\bar{Y}>99.97$ cause H_{0} to be rejected using the standard one-sided test at level of significance $\alpha=0.06$.

Ma 494- Theoretical Statistics- March 24, 2010.. 4
5. (i) Here

$$
\begin{aligned}
\alpha & =P\left(X \geq 0.90 \mid H_{0}\right)=\int_{0.90}^{1} f(x, 1) d x=\int_{0.90}^{1} 2 x d x \\
& \left.=x^{2}\right]_{x=0.90}^{x=1}=1-0.90^{2}=1-0.81=0.19
\end{aligned}
$$

(ii) If $H_{1}: \theta=10$, the power is

$$
\begin{aligned}
\text { Pow } & =P\left(X \geq 0.90 \mid H_{1}\right)=\int_{0.90}^{1} f(x, 10) d x=\int_{0.90}^{1} 10 x^{11} d x \\
& \left.=x^{11}\right]_{x=0.90}^{x=1}=1-0.90^{11}=1-0.314=0.686
\end{aligned}
$$

and $\beta=1-$ Pow $=1-0.686=0.314$.

