Ma 494 - Theoretical Statistics

Solutions for Test \#1 - February 19, 2009

Prof. Sawyer - Washington University
Closed book and closed notes. One $8 \frac{1}{2} \times 11$ sheet of paper with notes on both sides and a calculator are allowed.

1. The likelihood for $X=\left(X_{1}, \ldots, X_{n}\right)$ is

$$
\begin{aligned}
& L\left(r, X_{1}, \ldots, X_{n}\right)=\prod_{j=1}^{n} r \exp \left(-r / X_{j}\right)\left(1 / X_{j}^{2}\right)=r^{n} \prod_{j=1}^{n} \exp \left(-\frac{r}{X_{j}}\right) \prod_{j=1}^{n} \frac{1}{X_{j}^{2}} \\
& \quad=r^{n} \exp \left(-\sum_{j=1}^{n} \frac{r}{X_{j}}\right) \prod_{j=1}^{n} \frac{1}{X_{j}^{2}}
\end{aligned}
$$

Thus

$$
\log L(r, X)=n \log r-r \sum_{j=1}^{n} \frac{1}{X_{j}} \quad \text { and } \quad \frac{d}{d r} \log L(r, X)=\frac{n}{r}-\sum_{j=1}^{n} \frac{1}{X_{j}}
$$

Setting $\frac{d}{d r} \log L(r, X)=0$ gives

$$
\frac{1}{r}=\frac{1}{n} \sum_{j=1}^{n} \frac{1}{X_{j}} \quad \text { and } \quad \widehat{r}=\frac{n}{\sum_{j=1}^{n} \frac{1}{X_{j}}}
$$

for the maximum-likelihood estimator.
2. If X_{1}, \ldots, X_{n} are a sample from $f(x, \theta)$, then $E(\bar{X})=(1 / n) \sum_{j=1}^{n} E\left(X_{j}\right)=$ $E\left(X_{1}\right)$ where $E\left(X_{1}\right)=\int_{-\infty}^{\infty} x f(x, \theta) d x$, so that it is sufficient to prove $E\left(X_{1}\right)=\theta$. The easiest way to calculate the integral is to write it as

$$
\begin{gathered}
\int_{-\infty}^{\infty} x(1 / 2) \exp (-|x-\theta|) d x=\int_{-\infty}^{\infty}(x+\theta)(1 / 2) \exp (-|x|) d x \\
=\int_{-\infty}^{\infty} x(1 / 2) \exp (-|x|) d x+\int_{-\infty}^{\infty} \theta(1 / 2) \exp (-|x|) d x
\end{gathered}
$$

The first integral after the last equals sign is zero since $\exp (-|x|)$ is an even function. The second integral is θ since the integral of a probability density is one. Thus $E\left(X_{i}\right)=\theta$, which was to be proven.
(You can also calculate the first integral by breaking it up into two pieces, one for $x \leq \theta$ and one for $x \geq \theta$.)
3. (i) If $f(x, \mu)=e^{-\mu} \mu^{x} / x$!, then

$$
\log f(x, \mu)=-\mu+x \log \mu-\log (x!) \quad \text { and } \quad \frac{d}{d \mu} \log f(x, \mu)=-1+\frac{x}{\mu}
$$

Thus the scores are

$$
Y_{k}=\frac{d}{d \mu} \log f\left(X_{k}, \mu\right)=-1+\frac{X_{k}}{\mu}=\frac{X_{k}-\mu}{\mu}
$$

The Fisher information can be calculated either as

$$
I(\mu)=\operatorname{Var}\left(Y_{k}\right)=\frac{\operatorname{Var}\left(X_{k}\right)}{\mu^{2}}=\frac{1}{\mu}
$$

or as

$$
I\left(\mu=-E\left(\frac{d^{2}}{d \mu^{2}} \log f(x, \mu)\right)=-E\left(-\frac{X_{k}}{\mu^{2}}\right)=\frac{1}{\mu}\right.
$$

since $E\left(X_{k}\right)=\operatorname{Var}\left(X_{k}\right)=\mu$.
(ii) The Cramér-Rao lower bound for the variance of an unbiased estimator is $1 /(n I(\mu))=\mu / n$ in this case. Since $\operatorname{Var}(\bar{X})=\operatorname{Var}\left(X_{k}\right) / n=\mu / n$ as well, \bar{X} is an efficient estimator of μ.
4. If $f(x, p)=(x+1) p^{x}(1-p)^{2}$ for $x=0,1,2, \ldots$, the likelihood is

$$
L\left(p, X_{1}, \ldots, X_{n}\right)=\prod_{j=1}^{n}\left(X_{j}+1\right) p^{X_{j}}(1-p) 2=(1-p)^{2 n} p\left(\sum_{j=1}^{n} X_{j}\right) \prod_{j=1}^{n}\left(X_{j}+1\right)
$$

Thus if $X=\left(X_{1}, \ldots, X_{n}\right)$

$$
\log L(p, X)=2 n \log (1-p)+\sum_{j=1}^{n} X_{j} \log (p)+A(X)
$$

and

$$
\frac{d}{d p} \log L(p, X)=\frac{-2 n}{1-p}+\left(\sum_{j=1}^{n} X_{j}\right) \frac{1}{p}
$$

(notice the minus sign from differentiating $\log (1-p)$). Setting $\frac{d}{d p} \log L(p, X)=0$ gives $p /(1-p)=(1 / 2 n) \sum_{j=1}^{n} X_{j}=(1 / 2) \bar{X}$ and $p=\widehat{p}=\bar{X} /(2+\bar{X})$.

Ma 494- Theoretical Statistics- February 19, 2009 3
5. If $f(x, \theta)=4 \theta x^{3} e^{-\theta x^{4}}$, the likelihood is

$$
\begin{aligned}
L\left(\theta, X_{1}, \ldots, X_{n}\right) & =\prod_{j=1}^{n} 4 \theta X_{j}^{3} e^{-\theta X_{j}^{4}}=(4 \theta)^{n} \exp \left(-\theta \sum_{j=1}^{n} X_{j}^{4}\right) \prod_{j=1}^{n} X_{j}^{3} \\
& =g\left(\theta, \sum_{j=1}^{n} X_{j}^{4}\right) A\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}
$$

for $g(\theta, y)=(4 \theta)^{n} e^{-\theta y}$ and $A(X)=\prod_{j=1}^{n} X_{j}^{3}$. This implies that $S(X)=\sum_{j=1}^{n} X_{j}^{4}$ is a sufficient statistic for θ.

