Ma 494 — Theoretical Statistics

Solutions for Test #1 — February 19, 2009

Prof. Sawyer — Washington University

Closed book and closed notes. One $8\frac{1}{2} \times 11$ sheet of paper with notes on both sides and a calculator are allowed.

1. The likelihood for $X = (X_1, \ldots, X_n)$ is

$$L(r, X_1, \dots, X_n) = \prod_{j=1}^n r \exp(-r/X_j)(1/X_j^2) = r^n \prod_{j=1}^n \exp\left(-\frac{r}{X_j}\right) \prod_{j=1}^n \frac{1}{X_j^2}$$
$$= r^n \exp\left(-\sum_{j=1}^n \frac{r}{X_j}\right) \prod_{j=1}^n \frac{1}{X_j^2}$$

Thus

$$\log L(r, X) = n \log r - r \sum_{j=1}^{n} \frac{1}{X_j}$$
 and $\frac{d}{dr} \log L(r, X) = \frac{n}{r} - \sum_{j=1}^{n} \frac{1}{X_j}$

Setting $\frac{d}{dr} \log L(r, X) = 0$ gives

$$\frac{1}{r} = \frac{1}{n} \sum_{j=1}^{n} \frac{1}{X_j} \quad \text{and} \quad \widehat{r} = \frac{n}{\sum_{j=1}^{n} \frac{1}{X_j}}$$

for the maximum-likelihood estimator.

2. If X_1, \ldots, X_n are a sample from $f(x, \theta)$, then $E(\overline{X}) = (1/n) \sum_{j=1}^n E(X_j) = E(X_1)$ where $E(X_1) = \int_{-\infty}^{\infty} x f(x, \theta) dx$, so that it is sufficient to prove $E(X_1) = \theta$. The easiest way to calculate the integral is to write it as

$$\int_{-\infty}^{\infty} x(1/2) \exp(-|x-\theta|) \, dx = \int_{-\infty}^{\infty} (x+\theta)(1/2) \exp(-|x|) \, dx$$
$$= \int_{-\infty}^{\infty} x(1/2) \exp(-|x|) \, dx + \int_{-\infty}^{\infty} \theta(1/2) \exp(-|x|) \, dx$$

The first integral after the last equals sign is zero since $\exp(-|x|)$ is an even function. The second integral is θ since the integral of a probability density is one. Thus $E(X_i) = \theta$, which was to be proven.

(You can also calculate the first integral by breaking it up into two pieces, one for $x \leq \theta$ and one for $x \geq \theta$.)

3. (i) If
$$f(x,\mu) = e^{-\mu}\mu^x/x!$$
, then

$$\log f(x,\mu) = -\mu + x \log \mu - \log(x!) \quad \text{and} \quad \frac{d}{d\mu} \log f(x,\mu) = -1 + \frac{x}{\mu}$$

Thus the scores are

$$Y_k = \frac{d}{d\mu} \log f(X_k, \mu) = -1 + \frac{X_k}{\mu} = \frac{X_k - \mu}{\mu}$$

The Fisher information can be calculated either as

$$I(\mu) = \operatorname{Var}(Y_k) = \frac{\operatorname{Var}(X_k)}{\mu^2} = \frac{1}{\mu}$$

or as

$$I(\mu = -E\left(\frac{d^2}{d\mu^2}\log f(x,\mu)\right) = -E\left(-\frac{X_k}{\mu^2}\right) = \frac{1}{\mu}$$

since $E(X_k) = \operatorname{Var}(X_k) = \mu$.

(ii) The Cramér-Rao lower bound for the variance of an unbiased estimator is $1/(nI(\mu)) = \mu/n$ in this case. Since $\operatorname{Var}(\overline{X}) = \operatorname{Var}(X_k)/n = \mu/n$ as well, \overline{X} is an efficient estimator of μ .

4. If
$$f(x,p) = (x+1)p^x(1-p)^2$$
 for $x = 0, 1, 2, ...,$ the likelihood is

$$L(p, X_1, \dots, X_n) = \prod_{j=1}^n (X_j + 1) p^{X_j} (1-p) 2 = (1-p)^{2n} p^{\left(\sum_{j=1}^n X_j\right)} \prod_{j=1}^n (X_j + 1)$$

Thus if $X = (X_1, \ldots, X_n)$

$$\log L(p,X) = 2n \log(1-p) + \sum_{j=1}^{n} X_j \log(p) + A(X)$$

and

$$\frac{d}{dp}\log L(p,X) = \frac{-2n}{1-p} + \left(\sum_{j=1}^{n} X_j\right)\frac{1}{p}$$

(notice the minus sign from differentiating $\log(1-p)$). Setting $\frac{d}{dp}\log L(p,X) = 0$ gives $p/(1-p) = (1/2n)\sum_{j=1}^{n} X_j = (1/2)\overline{X}$ and $p = \widehat{p} = \overline{X}/(2+\overline{X})$.

Ma 494– Theoretical Statistics— February 19, 2009 3

5. If $f(x,\theta) = 4\theta x^3 e^{-\theta x^4}$, the likelihood is

$$L(\theta, X_1, \dots, X_n) = \prod_{j=1}^n 4\theta X_j^3 e^{-\theta X_j^4} = (4\theta)^n \exp\left(-\theta \sum_{j=1}^n X_j^4\right) \prod_{j=1}^n X_j^3$$
$$= g\left(\theta, \sum_{j=1}^n X_j^4\right) A(X_1, \dots, X_n)$$

for $g(\theta, y) = (4\theta)^n e^{-\theta y}$ and $A(X) = \prod_{j=1}^n X_j^3$. This implies that $S(X) = \sum_{j=1}^n X_j^4$ is a sufficient statistic for θ .