
Ma494 — Theoretical Statistics
Test #2 — Solutions for April 14, 2010

Prof. Sawyer — Washington University

Take-home examination. Open book and notes. Due at end of period on 04/14/2010.
Six (6) problems on 3 pages. Not all parts of problems will be equally weighted.

1. (See Section 8 of the Math494 notes for the background.)
(i) If Pi are the n = 8 listed P-values, then the values Xi = 2 log(1/Pi) are

8.5374, 6.43775, 5.46674, 5.23459, 3.1213, 2.34237, 1.12424, and 0.278524, respec-
tively, and X =

∑8
i=1 Xi = 32.5429. The P-value of Fisher’s meta-analysis test for

these 8 P-values is P = P (χ16 ≥ 32.5429) = 0.00849139, so that we reject H0 at
α = 0.01 as well as at α = 0.05.

(ii) Consider the power-law density f(x, α) = αxα−1 for 0 ≤ x ≤ 1. If H0 is
true, then Pi are uniformly distributed in (0, 1), so that α = 1. Fisher’s test is UMP
(uniformly most powerful) against any alternative α < 1, for which the P-values Pi

are more concentrated near P = 0. (See Section 8 in the notes.)

2. By Section 7.1 in the Math494 notes, the GLRT statistic L̂Rn(X) (with the
hypothesis H1 in the numerator) is L̂Rn(X) = 1/(Xmax)n, with rejection of H0 for
large values of L̂Rn(X). Given H0, X1, . . . , Xn are uniformly distributed in (0, 1).
The critical regions of the GLRT test are Cα = {X : Xmax ≤ λ } with λ = λα

determined by the level of significance P (Cα | H0) = P (Xmax ≤ λ | H0) =
P (max1≤i≤n Xi ≤ λα) = λn = α, or λ = λα = α1/n.

In particular λ = 0.051/n if α = 0.05. Thus Xmax = 0.80 is in the critical
region (or X ∈ Cα) if Xmax = 0.80 ≤ λ = 0.051/n, or if log(0.80) ≤ (1/n) log(0.05)
or n ≥ log(0.05)/ log(0.80) = 13.4251, so that Xmax = 0.80 causes H0 to be rejected
in favor of H1 if and only if n ≥ 14.

3. By standard results, S2 = (1/(n−1))
∑n

j=1(Xj−X)2 ≈ (σ2/(n−1))Y where Y

has a χ2 distribution with n − 1 degrees of freedom (that is, Y ≈ χ2
n−1). Thus

Var(S2) = (σ4/(n − 1)2) Var(Y ). Since Y ≈ χ2
n−1 ≈ gamma

(
(n − 1)/2, 1/2

)
and

Var
(
gamma(α, β)

)
= α/β2, we conclude Var(Y ) =

(
(n − 1)/2

)
/(1/2)2 = 2(n − 1)

and Var(S2) = (σ4/((n− 1)2)(2(n− 1)) = 2σ4/(n− 1).

4. Abbreviating X = (X1, X2, . . . , Xn), the likelihood is

L(θ, X) =
n∏

i=1

f(Xi, θ) = (1/2)nθn

(
n∏

i=1

X
−3/2
i

)
n∏

i=1

exp
(
−θ

1√
Xi

)

= θn C(X) exp

(
−θ

n∑

i=1

1√
Xi

)



Ma494– Theoretical Statistics— Solutions for April 14, 2010 . . . . . . . . . . . . . . . . . . . . 2

where C(X) depends only on X1, . . . , Xn. Thus

log L(θ,X) = n log(θ) + log C(X)− θ

n∑

i=1

1√
Xi

The MLE θ̂ is found by solving

∂

∂θ
log L(θ, X) =

n

θ
−

n∑

i=1

1√
Xi

= 0

Thus
θ̂ =

n
n∑

i=1

1√
Xi

5. (i) By definition, χ2
n has the same distribution as Z2

1 + Z2
2 + . . . + Z2

n, where
Z1, Z2, . . . , Zn are independent normal N(0, 1) random variables. In particular

P

(
χ2

n − n√
2n

≤ y

)
= P

(
Z2

1 + . . . + Z2
n − n√

2n
≤ y

)

Since Z2
i ≈ χ2

1 ≈ gamma(1/2, 1/2) and, if Y ≈ gamma(α, β), E(Y ) = α/β and
Var(Y ) = α/β2, it follows that µ = E(Z2

i ) = 1 and σ2 = Var(Z2
i ) = 2. Thus by the

central limit theorem applied to the Z2
i

lim
n→∞

P

(
χ2

n − n√
2n

≤ y

)
= lim

n→∞
P

(
Z2

1 + . . . + Z2
n − n√

2n
≤ y

)

=
1√
2π

∫ y

−∞
e−(1/2)x2

dx

for all y. This means that Z = (χ2
n − n)/

√
2n is approximately standard normal.

Solving for χ2
n leads to χ2

n = n + Z
√

2n.
(ii) If A = (χ2

48)0.90, then, using the approximation in part (ii), P (χ2
48 ≤ A) =

P (48 + Z
√

96 ≤ A) = P
(
Z ≤ (A − 48)/

√
96

)
= 0.90 and (A − 48)/

√
96 is ap-

proximately 1.28155. Thus A is approximately 48 + 1.28155
√

96 = 60.557. From
Table A.3 pp856–857 in the back of the text, (χ2

48)0.90 = 60.907, so that the ap-
proximate value is approximately 0.350 or 0.57% too small.

(iii) By the same argument, (χ2
150)0.90 = 150 + 1.28155

√
300 = 172.197.
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6. By equation (3) in the problem,

2 log L̂Rn(X) = 2
(

n

2
log

(
1 +

T (X)2

n− 1

))
= n log

(
1 +

T (X)2

n− 1

)

Thus

P
(
2 log L̂Rn(X) ≤ y

)
= P

(
n log

(
1 +

T (X)2

n− 1

)
≤ y

)
(1)

= P

(
log

(
1 +

T (X)2

n− 1

)
≤ y

n

)
= P

(
1 +

T (X)2

n− 1
≤ ey/n

)

= P
(
T (X)2 ≤ (n− 1)

(
ey/n − 1

))
(2)

Note
lim

n→∞
(n− 1)

(
ey/n − 1

)
= lim

n→∞
n
(
ey/n − 1

)
= y (3)

by L’Hôpital’s rule. Given H0, T (X) has a Student-t distribution with n−1 degrees
of freedom, so that T (X)2 has the same distribution as

Z2
0

1
n−1

n−1∑

i=1

Z2
i

where Z0, Z1, Z2, . . . are independent standard normal variables. By the law of
large numbers, limn→∞

(
1/(n − 1)

) ∑n−1
i=1 Z2

i = 1. Thus, in distribution, by the
hints in Problem 6,

lim
n→∞

P
(
T (X)2 ≤ y

)
= lim

n→∞
P

(
Z2

0

1
n−1

∑n−1
i=1 Z2

i

≤ y

)
(4)

= P
(
Z2

0 ≤ y
)

= P
(
χ2

1 ≤ y
)

Putting together (1), (2), (3), (4), and part (ii) of the hint implies

lim
n→∞

P
(
2 log L̂Rn(X) ≤ y

)
= P (χ2

1 ≤ y)

for all y, which was to be proven.


