Ma 494 - Theoretical Statistics

Test \#2 - Solutions for April 14, 2010

Prof. Sawyer - Washington University

Take-home examination. Open book and notes. Due at end of period on 04/14/2010. Six (6) problems on 3 pages. Not all parts of problems will be equally weighted.

1. (See Section 8 of the Math494 notes for the background.)
(i) If P_{i} are the $n=8$ listed P -values, then the values $X_{i}=2 \log \left(1 / P_{i}\right)$ are 8.5374, $6.43775,5.46674,5.23459,3.1213,2.34237,1.12424$, and 0.278524 , respectively, and $X=\sum_{i=1}^{8} X_{i}=32.5429$. The P-value of Fisher's meta-analysis test for these 8 P -values is $P=P\left(\chi_{16} \geq 32.5429\right)=0.00849139$, so that we reject H_{0} at $\alpha=0.01$ as well as at $\alpha=0.05$.
(ii) Consider the power-law density $f(x, \alpha)=\alpha x^{\alpha-1}$ for $0 \leq x \leq 1$. If H_{0} is true, then P_{i} are uniformly distributed in $(0,1)$, so that $\alpha=1$. Fisher's test is UMP (uniformly most powerful) against any alternative $\alpha<1$, for which the P -values P_{i} are more concentrated near $P=0$. (See Section 8 in the notes.)
2. By Section 7.1 in the Math494 notes, the GLRT statistic $\widehat{L R}_{n}(X)$ (with the hypothesis H_{1} in the numerator) is $\widehat{L R}_{n}(X)=1 /\left(X_{\max }\right)^{n}$, with rejection of H_{0} for large values of $\widehat{L R}_{n}(X)$. Given $H_{0}, X_{1}, \ldots, X_{n}$ are uniformly distributed in $(0,1)$. The critical regions of the GLRT test are $\mathcal{C}_{\alpha}=\left\{X: X_{\max } \leq \lambda\right\}$ with $\lambda=\lambda_{\alpha}$ determined by the level of significance $P\left(\mathcal{C}_{\alpha} \mid H_{0}\right)=P\left(X_{\max } \leq \lambda \mid H_{0}\right)=$ $P\left(\max _{1 \leq i \leq n} X_{i} \leq \lambda_{\alpha}\right)=\lambda^{n}=\alpha$, or $\lambda=\lambda_{\alpha}=\alpha^{1 / n}$.

In particular $\lambda=0.05^{1 / n}$ if $\alpha=0.05$. Thus $X_{\max }=0.80$ is in the critical region $\left(\right.$ or $X \in \mathcal{C}_{\alpha}$) if $X_{\max }=0.80 \leq \lambda=0.05^{1 / n}$, or if $\log (0.80) \leq(1 / n) \log (0.05)$ or $n \geq \log (0.05) / \log (0.80)=13.4251$, so that $X_{\max }=0.80$ causes H_{0} to be rejected in favor of H_{1} if and only if $n \geq 14$.
3. By standard results, $S^{2}=(1 /(n-1)) \sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2} \approx\left(\sigma^{2} /(n-1)\right) Y$ where Y has a χ^{2} distribution with $n-1$ degrees of freedom (that is, $Y \approx \chi_{n-1}^{2}$). Thus $\operatorname{Var}\left(S^{2}\right)=\left(\sigma^{4} /(n-1)^{2}\right) \operatorname{Var}(Y)$. Since $Y \approx \chi_{n-1}^{2} \approx \operatorname{gamma}((n-1) / 2,1 / 2)$ and $\operatorname{Var}(\operatorname{gamma}(\alpha, \beta))=\alpha / \beta^{2}$, we conclude $\operatorname{Var}(Y)=((n-1) / 2) /(1 / 2)^{2}=2(n-1)$ and $\operatorname{Var}\left(S^{2}\right)=\left(\sigma^{4} /\left((n-1)^{2}\right)(2(n-1))=2 \sigma^{4} /(n-1)\right.$.
4. Abbreviating $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, the likelihood is

$$
\begin{aligned}
L(\theta, X) & =\prod_{i=1}^{n} f\left(X_{i}, \theta\right)=(1 / 2)^{n} \theta^{n}\left(\prod_{i=1}^{n} X_{i}^{-3 / 2}\right) \prod_{i=1}^{n} \exp \left(-\theta \frac{1}{\sqrt{X_{i}}}\right) \\
& =\theta^{n} C(X) \exp \left(-\theta \sum_{i=1}^{n} \frac{1}{\sqrt{X_{i}}}\right)
\end{aligned}
$$

Ma 494- Theoretical Statistics- Solutions for April 14, 2010.......................... 2
where $C(X)$ depends only on X_{1}, \ldots, X_{n}. Thus

$$
\log L(\theta, X)=n \log (\theta)+\log C(X)-\theta \sum_{i=1}^{n} \frac{1}{\sqrt{X_{i}}}
$$

The MLE $\widehat{\theta}$ is found by solving

$$
\frac{\partial}{\partial \theta} \log L(\theta, X)=\frac{n}{\theta}-\sum_{i=1}^{n} \frac{1}{\sqrt{X_{i}}}=0
$$

Thus

$$
\widehat{\theta}=\frac{n}{\sum_{i=1}^{n} \frac{1}{\sqrt{X_{i}}}}
$$

5. (i) By definition, χ_{n}^{2} has the same distribution as $Z_{1}^{2}+Z_{2}^{2}+\ldots+Z_{n}^{2}$, where $Z_{1}, Z_{2}, \ldots, Z_{n}$ are independent normal $N(0,1)$ random variables. In particular

$$
P\left(\frac{\chi_{n}^{2}-n}{\sqrt{2 n}} \leq y\right)=P\left(\frac{Z_{1}^{2}+\ldots+Z_{n}^{2}-n}{\sqrt{2 n}} \leq y\right)
$$

Since $Z_{i}^{2} \approx \chi_{1}^{2} \approx \operatorname{gamma}(1 / 2,1 / 2)$ and, if $Y \approx \operatorname{gamma}(\alpha, \beta), E(Y)=\alpha / \beta$ and $\operatorname{Var}(Y)=\alpha / \beta^{2}$, it follows that $\mu=E\left(Z_{i}^{2}\right)=1$ and $\sigma^{2}=\operatorname{Var}\left(Z_{i}^{2}\right)=2$. Thus by the central limit theorem applied to the Z_{i}^{2}

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P\left(\frac{\chi_{n}^{2}-n}{\sqrt{2 n}} \leq y\right)=\lim _{n \rightarrow \infty} P\left(\frac{Z_{1}^{2}+\ldots+Z_{n}^{2}-n}{\sqrt{2 n}} \leq y\right) \\
& \quad=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-(1 / 2) x^{2}} d x
\end{aligned}
$$

for all y. This means that $Z=\left(\chi_{n}^{2}-n\right) / \sqrt{2 n}$ is approximately standard normal. Solving for χ_{n}^{2} leads to $\chi_{n}^{2}=n+Z \sqrt{2 n}$.
(ii) If $A=\left(\chi_{48}^{2}\right)_{0.90}$, then, using the approximation in part (ii), $P\left(\chi_{48}^{2} \leq A\right)=$ $P(48+Z \sqrt{96} \leq A)=P(Z \leq(A-48) / \sqrt{96})=0.90$ and $(A-48) / \sqrt{96}$ is approximately 1.28155 . Thus A is approximately $48+1.28155 \sqrt{96}=60.557$. From Table A. 3 pp856-857 in the back of the text, $\left(\chi_{48}^{2}\right)_{0.90}=60.907$, so that the approximate value is approximately 0.350 or 0.57% too small.
(iii) By the same argument, $\left(\chi_{150}^{2}\right)_{0.90}=150+1.28155 \sqrt{300}=172.197$.

Ma 494- Theoretical Statistics- Solutions for April 14, 2010......................... 3
6. By equation (3) in the problem,

$$
2 \log \widehat{L R}_{n}(X)=2\left(\frac{n}{2} \log \left(1+\frac{T(X)^{2}}{n-1}\right)\right)=n \log \left(1+\frac{T(X)^{2}}{n-1}\right)
$$

Thus

$$
\begin{align*}
& P\left(2 \log \widehat{L R}_{n}(X) \leq y\right)=P\left(n \log \left(1+\frac{T(X)^{2}}{n-1}\right) \leq y\right) \tag{1}\\
& \quad=P\left(\log \left(1+\frac{T(X)^{2}}{n-1}\right) \leq \frac{y}{n}\right)=P\left(1+\frac{T(X)^{2}}{n-1} \leq e^{y / n}\right) \\
& \quad=P\left(T(X)^{2} \leq(n-1)\left(e^{y / n}-1\right)\right) \tag{2}
\end{align*}
$$

Note

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(n-1)\left(e^{y / n}-1\right)=\lim _{n \rightarrow \infty} n\left(e^{y / n}-1\right)=y \tag{3}
\end{equation*}
$$

by L'Hôpital's rule. Given $H_{0}, T(X)$ has a Student- t distribution with $n-1$ degrees of freedom, so that $T(X)^{2}$ has the same distribution as

$$
\frac{Z_{0}^{2}}{\frac{1}{n-1} \sum_{i=1}^{n-1} Z_{i}^{2}}
$$

where $Z_{0}, Z_{1}, Z_{2}, \ldots$ are independent standard normal variables. By the law of large numbers, $\lim _{n \rightarrow \infty}(1 /(n-1)) \sum_{i=1}^{n-1} Z_{i}^{2}=1$. Thus, in distribution, by the hints in Problem 6,

$$
\begin{align*}
& \lim _{n \rightarrow \infty} P\left(T(X)^{2} \leq y\right)=\lim _{n \rightarrow \infty} P\left(\frac{Z_{0}^{2}}{\frac{1}{n-1} \sum_{i=1}^{n-1} Z_{i}^{2}} \leq y\right) \tag{4}\\
& \quad=P\left(Z_{0}^{2} \leq y\right)=P\left(\chi_{1}^{2} \leq y\right)
\end{align*}
$$

Putting together (1), (2), (3), (4), and part (ii) of the hint implies

$$
\lim _{n \rightarrow \infty} P\left(2 \log \widehat{L R}_{n}(X) \leq y\right)=P\left(\chi_{1}^{2} \leq y\right)
$$

for all y, which was to be proven.

