Ma 494 — Theoretical Statistics

Final — May 10, 2010

Prof. Sawyer — Washington University

Seven problems on two pages. Closed book and closed notes. Two $8\frac{1}{2} \times 11$ sheets of paper with notes on both sides and a calculator are allowed. Parts of a problem may be weighted according to difficulty.

1. Let $X = (X_1, \ldots, X_n)$ be independent with density $f(x, \theta) = \theta e^{-\theta e^x} e^x$ for $\theta > 0$ and $-\infty < x < \infty$. (This is a special case of what is called the extreme-value distribution.) Find a real-valued function $S(X) = S(X_1, \ldots, X_n)$ such that S(X) is a sufficient statistic for θ .

2. Let Y_1, Y_2, \ldots, Y_n for n = 40 be independent random variables with a geometric distribution. That is, $P(Y = x) = (1 - p)^{x-1}p$ for $x = 1, 2, \ldots$ where 0 . The values of the entire sequence are not available, but we do have the table

Value: 1 2 3 4 5
$$\geq 6$$

Counts: 8 7 4 6 5 10 Sum: 40

Find the likelihood $L(p, K_1, \ldots, K_5, R_6)$ in terms of the counts K_1, \ldots, K_5, R_6 in the second row of the table and find the MLE \hat{p} of p.

3. Let $X = (X_1, X_2, \ldots, X_n)$ be an independent sample from a normal distributions $N(\mu, \sigma^2)$. Let $S_1(X) = \sum_{j=1}^n X_j$ and $S_2(X) = \sum_{j=1}^n X_j^2$. Prove that $T(X) = (S_1(X), S_2(X))$ is a sufficient statistic for $\theta = (\mu, \sigma^2)$. (That is, the likelihood $L(\theta, X)$ can be written $g(T(X), \theta)h(X)$ where h(X) depends only on X.)

4. Let $Y = (Y_1, \ldots, Y_n)$ be independent with density $f(y, \theta) = \theta/(y+1)^{\theta+1}$ for y > 0 and $\theta > 0$.

(i) Find the MLE $\hat{\theta}$ of θ in terms of Y and the Fisher information for one observation of Y.

(ii) Use the central limit theorem for MLEs ("the asymptotic efficiency of an MLE") to find an approximate 95% confidence interval for θ about $\hat{\theta}$ in terms of Y and n.

5. (i) Let $X = (X_1, X_2, ..., X_n)$ be an independent sample that can have density either f(x) or g(x). Let H_1 be the hypothesis that the density is g(x) and H_0 that it is f(x). A test procedure can be thought of as a subset $\mathcal{C} \subseteq \mathbb{R}^n$ with the convention that we accept H_1 if $X \in \mathcal{C}$ and accept H_0 if $X \notin \mathcal{C}$. What is the power of this test? What is its level of significance? How do these depend on f(x) and g(x)?

(ii) State the Neyman-Pearson Lemma. What does it say about finding powerful tests? 6. Let $X = (X_1, X_2, ..., X_n)$ be an independent sample from a density $f(x, \theta)$ with an unknown parameter θ . To estimate θ , we have a choice between an unbiased estimator $T_U(X)$ and a biased estimator $T_B(X)$ with $\operatorname{Var}(T_B) = 0.80 \operatorname{Var}(T_U)$. How big can the bias of T_B (that is, $|E_{\theta}(T_B) - \theta|$) be as a fraction of the standard deviation of T_U and still have the quadratic-loss risk $R(\theta, T_B) < R(\theta, T_U)$? (*Hint*: Recall $R(\theta, T) = E_{\theta}((T(X) - \theta)^2)$.)

7. Let $X = (X_1, X_2, ..., X_n)$ be an independent sample that has a gamma distribution gamma(r, 1) for some r > 1. (That is, has density $(1/\Gamma(r))x^{r-1}e^{-x}$ for x > 0.)

(i) Find the most powerful test at level of significance α for $H_0: r = 1$ against $H_1: r = 3$. (*Hint*: By definition, a test is a subset $\mathcal{C} \subseteq \mathbb{R}^n$ with the convention that we reject H_0 and accept H_1 if $X \in \mathcal{C}$. The test \mathcal{C} should be defined in terms of a free parameter. Say how this free parameter is related to α .)

(ii) Are the tests that you found in the part UMP (uniformly most powerful) for all r > 1? Why?