Ma 494 — Theoretical Statistics

Solutions for Final — May 10, 2010

Prof. Sawyer — Washington University

Seven problem solutions on four pages. Closed book and closed notes. Two $8\frac{1}{2} \times 11$ sheets of paper with notes on both sides and a calculator are allowed. Parts of a problem may be weighted according to difficulty.

1. The likelihood is

$$L(\theta, X) = \prod_{i=1}^{n} \left(\theta e^{-\theta e^{X_i}} e^{X_i} \right) = \theta^n \exp\left(-\theta \sum_{i=1}^{n} e^{X_i}\right) \exp\left(-\sum_{i=1}^{n} X_i\right)$$

The condition for a sufficient statistic is $L(\theta, X) = g(S(X), \theta)h(X)$ where h(X) depends only on X. The function $S(X) = \sum_{i=1}^{n} e^{X_i}$ satisfies this condition with $g(S, \theta) = \theta^n e^{-\theta S}$.

2. Note $P(Y_i = j) = (1 - p)^{j-1}p$ and

$$P(Y_i \ge j) = \sum_{i=j}^{\infty} (1-p)^{i-1} p = (1-p)^{j-1} \sum_{i=0}^{\infty} (1-p)^i p$$
$$= (1-p)^{j-1} \frac{1}{1-(1-p)} p = (1-p)^{j-1}$$

so that $P(Y_i \ge 6) = (1-p)^5$. Thus the likelihood in terms of K_1, \ldots, K_5, R_6 given p is

$$L(p, K, R) = \left(\prod_{j=1}^{5} \left((1-p)^{j-1}p\right)^{K_j}\right) \left((1-p)^5\right)^{R_6}$$
$$= p^{\sum_{j=1}^{5} K_j} (1-p)^{\sum_{j=1}^{5} (j-1)K_j + 5R_6}$$

Since the maximum of $p^A(1-p)^B$ for A, B > 0 and 0 is attained at <math>p = A/(A+B), the MLE is

$$\widehat{p} = \frac{\sum_{j=1}^{5} K_j}{\sum_{j=1}^{5} K_j + \sum_{j=1}^{5} (j-1)K_j + 5R_6} = \frac{\sum_{j=1}^{5} K_j}{\sum_{j=1}^{5} jK_j + 5R_6}$$
$$= \frac{8+7+4+6+5}{8+14+12+24+25+50} = \frac{30}{133} = 0.2256$$

3. The likelihood is

$$\begin{split} L(\theta, X) &= \prod_{i=1}^{n} \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (X_i - \mu)^2 \right) \right) \\ &= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (X_i^2 - 2\mu X_i + \mu^2) \right) \\ &= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \left(\sum_{i=1}^{n} X_i^2 - 2\mu \sum_{i=1}^{n} X_i + n\mu^2 \right) \right) \right) \\ &= g\left(\sum_{i=1}^{n} X_i^2, \sum_{i=1}^{n} X_i, \mu, \sigma^2 \right) \end{split}$$

for an appropriate function $g(T_1, T_2, \mu, \sigma^2)$. Thus $T(X) = (T_1(X), T_2(X))$ is a sufficient statistic for $\theta = (\mu, \sigma^2)$.

4. (ia) The likelihood is

$$L(\theta, Y) = \prod_{j=1}^{n} \left(\theta / (Y_j + 1)^{\theta + 1} \right) = \frac{\theta^n}{\left(\prod_{j=1}^{n} (Y_j + 1) \right)^{\theta + 1}}$$

Thus

$$\log L(\theta, Y) = n \log \theta - (\theta + 1) \log \left(\prod_{j=1}^{n} (Y_j + 1) \right)$$
$$\frac{\partial}{\partial \theta} \log L(\theta, Y) = \frac{n}{\theta} - \log \left(\prod_{j=1}^{n} (Y_j + 1) \right) = \frac{n}{\theta} - \sum_{j=1}^{n} \log(Y_j + 1)$$

Setting the last expression equal to zero yields

$$\widehat{\theta} = \frac{n}{\sum_{i=1}^{n} \log(Y_j + 1)}$$

(ib) For $f(y, \theta) = \theta/(Y_j + 1)^{\theta+1}$, we have as above

$$\log f(Y_j, \theta) = \log \theta - (\theta + 1) \log(Y_j + 1)$$
$$\frac{\partial}{\partial \theta} \log f(Y_j, \theta) = \frac{1}{\theta} - \log(Y_j + 1) \quad \text{and}$$
$$\frac{\partial^2}{\partial \theta^2} \log f(Y_j, \theta) = -\frac{1}{\theta^2}$$

Since the Fisher information $I(f, \theta)$ is minus the expected value of the last expression, $I(f, \theta) = 1/\theta^2$.

(ii) The asymptotic (central) 95% confidence interval in general is

$$\left(\widehat{\theta} - \frac{1.96}{\sqrt{nI(f,\widehat{\theta})}}, \ \widehat{\theta} + \frac{1.96}{\sqrt{nI(f,\widehat{\theta})}}\right)$$

which, since $I(f, \hat{\theta}) = 1/\hat{\theta}^2$, equals

$$\left(\widehat{\theta} - \frac{1.96\,\widehat{\theta}}{\sqrt{n}},\,\widehat{\theta} + \frac{1.96\,\widehat{\theta}}{\sqrt{n}}\right)$$

5. (i) The power is the probability of accepting H_1 when H_1 is true, which is

$$P(X \in \mathcal{C} \mid H_1) = \int_{\mathcal{C}} g(\widetilde{x}) d\widetilde{x}$$

where $\tilde{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $g(\tilde{x})$ is the *n*-dimensional density $g(x_1)g(x_2)\ldots g(x_n)$, and the integral is *n*-dimensional. Similarly, the level of significance is the probability of accepting H_1 (or rejecting H_0) when H_0 is true, which is

$$P(X \in \mathcal{C} \mid H_0) = \int_{\mathcal{C}} f(\widetilde{x}) d\widetilde{x}$$

(ii) The Neyman-Pearson Lemma says that, for any pair of densities f(x) and g(x), among set $\mathcal{C} \subseteq \mathbb{R}^n$ with $P(X \in \mathcal{C} \mid H_0) = \alpha$ fixed, the set \mathcal{C} with the largest power is

$$\mathcal{C}(\lambda) = \left\{ \ \widetilde{x} : \frac{g(\widetilde{x})}{f(\widetilde{x})} \ge \lambda \ \right\}$$

where λ is chosen so that $P(X \in \mathcal{C}(\lambda) \mid H_0) = \int_{\mathcal{C}} f(\widetilde{x}) d\widetilde{x} = \alpha$.

6. Since $Var(X) = E(X^2) - E(X)^2$ for any random variable X, we have

$$E((X - \theta)^2) = \operatorname{Var}(X) + (E(X) - \theta)^2$$

Thus $R(T_B, \theta) = E((T_B - \theta)^2) = \operatorname{Var}(T_B) + Q^2$ where $Q = |E_{\theta}(T_B) - \theta|$. Thus $R(T_B, \theta) = \operatorname{Var}(T_B) + Q^2 = 0.80 \operatorname{Var}(T_U) + Q^2 \leq \operatorname{Var}(T_U)$ if and only if $Q^2 \leq (1 - 0.80) \operatorname{Var}(T_U) = 0.20 \operatorname{Var}(T_U)$, or if and only if

$$Q = |E_{\theta}(T_B) - \theta| \leq \sqrt{0.20}\sqrt{\operatorname{Var}(T_U)} = 0.4472\sqrt{\operatorname{Var}(T_U)}$$

Thus T_B will have smaller (quadratic-loss) risk as long as its bias Q is less than 0.4472 times the standard deviation of T_U .

7. (i) By the Neyman-Pearson lemma, the most powerful test is

$$\mathcal{C}(\lambda) = \left\{ \widetilde{x} : \frac{g(\widetilde{x}, r)}{g(\widetilde{x}, 1)} \ge \lambda \right\} = \left\{ \widetilde{x} : C(r) \frac{\prod_{j=1}^{n} x_{j}^{r-1} e^{-x_{j}}}{\prod_{j=1}^{n} e^{-x_{j}}} \ge \lambda \right\}$$
$$= \left\{ \widetilde{x} : C(r) \left(\prod_{j=1}^{n} x_{j}\right)^{r-1} \ge \lambda \right\} = \left\{ \widetilde{x} : \prod_{j=1}^{n} x_{j} \ge \lambda_{r} \right\}$$

where $\lambda_r = (\lambda/C(r))^{1/(r-1)}$. The constant λ_r is determined by $P(X \in \mathcal{C}(\lambda) \mid H_0) = \alpha$. For part (i), r = 3.

(ii) The set C is determined by the last set C above, where λ_r is determined by α . In particular, since λ_r depends only on α and H_0 , the constant λ_r is the same for all r > 1. Thus the most powerful test does not depend on r as long as r > 1. Hence the test is UMP for all r > 1.