Ma 494 - Theoretical Statistics

Solutions for Final - May 10, 2010
Prof. Sawyer - Washington University
Seven problem solutions on four pages. Closed book and closed notes. Two $8 \frac{1}{2} \times 11$ sheets of paper with notes on both sides and a calculator are allowed. Parts of a problem may be weighted according to difficulty.

1. The likelihood is

$$
L(\theta, X)=\prod_{i=1}^{n}\left(\theta e^{-\theta e^{X_{i}}} e^{X_{i}}\right)=\theta^{n} \exp \left(-\theta \sum_{i=1}^{n} e^{X_{i}}\right) \exp \left(-\sum_{i=1}^{n} X_{i}\right)
$$

The condition for a sufficient statistic is $L(\theta, X)=g(S(X), \theta) h(X)$ where $h(X)$ depends only on X. The function $S(X)=\sum_{i=1}^{n} e^{X_{i}}$ satisfies this condition with $g(S, \theta)=\theta^{n} e^{-\theta S}$.
2. Note $P\left(Y_{i}=j\right)=(1-p)^{j-1} p$ and

$$
\begin{aligned}
P\left(Y_{i} \geq j\right) & =\sum_{i=j}^{\infty}(1-p)^{i-1} p=(1-p)^{j-1} \sum_{i=0}^{\infty}(1-p)^{i} p \\
& =(1-p)^{j-1} \frac{1}{1-(1-p)} p=(1-p)^{j-1}
\end{aligned}
$$

so that $P\left(Y_{i} \geq 6\right)=(1-p)^{5}$. Thus the likelihood in terms of $K_{1}, \ldots, K_{5}, R_{6}$ given p is

$$
\begin{aligned}
L(p, K, R) & =\left(\prod_{j=1}^{5}\left((1-p)^{j-1} p\right)^{K_{j}}\right)\left((1-p)^{5}\right)^{R_{6}} \\
& =p^{\sum_{j=1}^{5} K_{j}}(1-p)^{\sum_{j=1}^{5}(j-1) K_{j}+5 R_{6}}
\end{aligned}
$$

Since the maximum of $p^{A}(1-p)^{B}$ for $A, B>0$ and $0<p<1$ is attained at $p=A /(A+B)$, the MLE is

$$
\begin{aligned}
\widehat{p} & =\frac{\sum_{j=1}^{5} K_{j}}{\sum_{j=1}^{5} K_{j}+\sum_{j=1}^{5}(j-1) K_{j}+5 R_{6}}=\frac{\sum_{j=1}^{5} K_{j}}{\sum_{j=1}^{5} j K_{j}+5 R_{6}} \\
& =\frac{8+7+4+6+5}{8+14+12+24+25+50}=\frac{30}{133}=0.2256
\end{aligned}
$$

3. The likelihood is

$$
\begin{aligned}
L(\theta, X) & =\prod_{i=1}^{n}\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(X_{i}-\mu\right)^{2}\right)\right) \\
& =\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}^{2}-2 \mu X_{i}+\mu^{2}\right)\right) \\
& \left.=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(\sum_{i=1}^{n} X_{i}^{2}-2 \mu \sum_{i=1}^{n} X_{i}+n \mu^{2}\right)\right)\right) \\
& =g\left(\sum_{i=1}^{n} X_{i}^{2}, \sum_{i=1}^{n} X_{i}, \mu, \sigma^{2}\right)
\end{aligned}
$$

for an appropriate function $g\left(T_{1}, T_{2}, \mu, \sigma^{2}\right)$. Thus $T(X)=\left(T_{1}(X), T_{2}(X)\right)$ is a sufficient statistic for $\theta=\left(\mu, \sigma^{2}\right)$.
4. (ia) The likelihood is

$$
L(\theta, Y)=\prod_{j=1}^{n}\left(\theta /\left(Y_{j}+1\right)^{\theta+1}\right)=\frac{\theta^{n}}{\left(\prod_{j=1}^{n}\left(Y_{j}+1\right)\right)^{\theta+1}}
$$

Thus

$$
\begin{aligned}
& \log L(\theta, Y)=n \log \theta-(\theta+1) \log \left(\prod_{j=1}^{n}\left(Y_{j}+1\right)\right) \\
& \frac{\partial}{\partial \theta} \log L(\theta, Y)=\frac{n}{\theta}-\log \left(\prod_{j=1}^{n}\left(Y_{j}+1\right)\right)=\frac{n}{\theta}-\sum_{j=1}^{n} \log \left(Y_{j}+1\right)
\end{aligned}
$$

Setting the last expression equal to zero yields

$$
\widehat{\theta}=\frac{n}{\sum_{i=1}^{n} \log \left(Y_{j}+1\right)}
$$

(ib) For $f(y, \theta)=\theta /\left(Y_{j}+1\right)^{\theta+1}$, we have as above

$$
\begin{aligned}
& \log f\left(Y_{j}, \theta\right)=\log \theta-(\theta+1) \log \left(Y_{j}+1\right) \\
& \frac{\partial}{\partial \theta} \log f\left(Y_{j}, \theta\right)=\frac{1}{\theta}-\log \left(Y_{j}+1\right) \quad \text { and } \\
& \frac{\partial^{2}}{\partial \theta^{2}} \log f\left(Y_{j}, \theta\right)=-\frac{1}{\theta^{2}}
\end{aligned}
$$

Since the Fisher information $I(f, \theta)$ is minus the expected value of the last expression, $I(f, \theta)=1 / \theta^{2}$.
(ii) The asymptotic (central) 95% confidence interval in general is

$$
\left(\widehat{\theta}-\frac{1.96}{\sqrt{n I(f, \widehat{\theta})}}, \widehat{\theta}+\frac{1.96}{\sqrt{n I(f, \widehat{\theta})}}\right)
$$

which, since $I(f, \widehat{\theta})=1 / \widehat{\theta}^{2}$, equals

$$
\left(\widehat{\theta}-\frac{1.96 \widehat{\theta}}{\sqrt{n}}, \widehat{\theta}+\frac{1.96 \widehat{\theta}}{\sqrt{n}}\right)
$$

5. (i) The power is the probability of accepting H_{1} when H_{1} is true, which is

$$
P\left(X \in \mathcal{C} \mid H_{1}\right)=\int_{\mathcal{C}} g(\widetilde{x}) d \widetilde{x}
$$

where $\widetilde{x}=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}, g(\widetilde{x})$ is the n-dimensional density $g\left(x_{1}\right) g\left(x_{2}\right) \ldots g\left(x_{n}\right)$, and the integral is n-dimensional. Similarly, the level of significance is the probability of accepting H_{1} (or rejecting H_{0}) when H_{0} is true, which is

$$
P\left(X \in \mathcal{C} \mid H_{0}\right)=\int_{\mathcal{C}} f(\widetilde{x}) d \widetilde{x}
$$

(ii) The Neyman-Pearson Lemma says that, for any pair of densities $f(x)$ and $g(x)$, among set $\mathcal{C} \subseteq R^{n}$ with $P\left(X \in \mathcal{C} \mid H_{0}\right)=\alpha$ fixed, the set \mathcal{C} with the largest power is

$$
\mathcal{C}(\lambda)=\left\{\widetilde{x}: \frac{g(\widetilde{x})}{f(\widetilde{x})} \geq \lambda\right\}
$$

where λ is chosen so that $P\left(X \in \mathcal{C}(\lambda) \mid H_{0}\right)=\int_{\mathcal{C}} f(\widetilde{x}) d \widetilde{x}=\alpha$.
6. Since $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}$ for any random variable X, we have

$$
E\left((X-\theta)^{2}\right)=\operatorname{Var}(X)+(E(X)-\theta)^{2}
$$

Thus $R\left(T_{B}, \theta\right)=E\left(\left(T_{B}-\theta\right)^{2}\right)=\operatorname{Var}\left(T_{B}\right)+Q^{2}$ where $Q=\left|E_{\theta}\left(T_{B}\right)-\theta\right|$. Thus $R\left(T_{B}, \theta\right)=\operatorname{Var}\left(T_{B}\right)+Q^{2}=0.80 \operatorname{Var}\left(T_{U}\right)+Q^{2} \leq \operatorname{Var}\left(T_{U}\right)$ if and only if $Q^{2} \leq$ $(1-0.80) \operatorname{Var}\left(T_{U}\right)=0.20 \operatorname{Var}\left(T_{U}\right)$, or if and only if

$$
Q=\left|E_{\theta}\left(T_{B}\right)-\theta\right| \leq \sqrt{0.20} \sqrt{\operatorname{Var}\left(T_{U}\right)}=0.4472 \sqrt{\operatorname{Var}\left(T_{U}\right)}
$$

Thus T_{B} will have smaller (quadratic-loss) risk as long as its bias Q is less than 0.4472 times the standard deviation of T_{U}.

Ma 494- Theoretical Statistics- May 10, 2010.
7. (i) By the Neyman-Pearson lemma, the most powerful test is

$$
\begin{aligned}
\mathcal{C}(\lambda) & =\left\{\widetilde{x}: \frac{g(\widetilde{x}, r)}{g(\widetilde{x}, 1)} \geq \lambda\right\}=\left\{\widetilde{x}: C(r) \frac{\prod_{j=1}^{n} x_{j}^{r-1} e^{-x_{j}}}{\prod_{j=1}^{n} e^{-x_{j}}} \geq \lambda\right\} \\
& =\left\{\widetilde{x}: C(r)\left(\prod_{j=1}^{n} x_{j}\right)^{r-1} \geq \lambda\right\}=\left\{\widetilde{x}: \prod_{j=1}^{n} x_{j} \geq \lambda_{r}\right\}
\end{aligned}
$$

where $\lambda_{r}=(\lambda / C(r))^{1 /(r-1)}$. The constant λ_{r} is determined by $P\left(X \in \mathcal{C}(\lambda) \mid H_{0}\right)=$ α. For part (i), $r=3$.
(ii) The set \mathcal{C} is determined by the last set \mathcal{C} above, where λ_{r} is determined by α. In particular, since λ_{r} depends only on α and H_{0}, the constant λ_{r} is the same for all $r>1$. Thus the most powerful test does not depend on r as long as $r>1$. Hence the test is UMP for all $r>1$.

