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The gamma distribution:

This is a distribution for x ≥ 0 with density

βα

Γ(α)
xα−1 exp(−βx) 0 ≤ x < ∞

Here α, β > 0 and Γ(α) =
∫∞
0

yα−1 exp(−βy) dy.

We say X ≈ Gam(α, β) if a random variable X has
this density. For α = 1, Gam(1, β) is the exponential
distribution with rate β:

β exp(−βx) 0 ≤ x < ∞
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Some example densities:

α = 1, β = 1/3

α = 3, β = 1

α = 30, β = 10

α = 90, β = 30
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If X ≈ Gam(α, β),

E(X) = α/β, Var(X) = α/β2

In general

Gam(α, β) ≈ (1/β) Gam(α, 1)

(that is, β is a rate parameter).
Gamma distributions can be scaled by setting

Xv = Gam

(
1

v
,
1

v

)
, Y = θXv

Then

E(Xv) = 1, Var(Xv) = v,

E(Y ) = θ, Var(Y ) = θ2v

which allows the modeling of arbitrary random X > 0
in terms of E(X) and Var(X):
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The same densities in θ and v coordinates:

θ = 3, v = 1

θ = 3, v = 0.333

θ = 3, v = 0.0333

θ = 3, v = 0.0111
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Some other important properties of gamma variables:

(i) If X1 ≈ Gam(α1, β) and X2 ≈ Gam(α2, β) and X1

and X2 are independent, then

X1 + X2 ≈ Gam(α1 + α2, β)

That means that Tk = Gam(k, β) can be viewed as
the waiting time for k independent events, where the k
events must occur in sequence and each has an expo-
nential waiting time Gam(1, β).
The resulting distribution

Gam(k, β) =
βk

(k − 1)!
xk−1 exp(−βx)

is called the Erlang distribution in queueing theory.
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(ii) If z ≈ N(0, 1), then z2 is Gam(1/2, 1/2). Thus

χ2
n ≈ z2

1 + z2
2 + . . . + z2

n ≈ Gam(n/2, 1/2)

This means that chi-square distributions in statistics
are special cases of gamma distributions.

(iii) An interesting use of gamma distributions is
Fisher’s method of combining the results of different
experiments. (Nowadays this would be called “meta-
analysis”.)

Suppose that you conducted four different experiments
and concluded that none were significant, with P-values

P1 = 0.07, P2 = 0.18, P3 = 0.09, P4 = 0.14

Taken together, are these enough to conclude signifi-
cance, assuming that you are not able to combine all
the data and analyze them together?
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Fishers idea is as follows. The first step is to combine
the four P-values into a single score, for which one can
assign a single P-value. A natural choice is

T = P1P2P3P4

for which Tobs = (0.07)(0.18)(0.09)(0.14) = 0.0001430.

Is this significantly small, given that it is the product
of P-values for 4 experiments? The key idea is that,
if a null hypothesis is true, then the P -value itself is
uniformly distributed in (0, 1). Thus

P (− log(Pi) ≥ t) = P (Pi ≤ e−t) = e−t

This means that each − log(Pi) ≈ Gam(1, 1) given H0.
Thus

− log(T ) = −
4∑

i=1

log(Pi) ≈ Gam(4, 1)
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In Fisher’s day, there were χ2 tables but no computers
or statistical calculators. However

Gam(4, 1) ≈ (1/2)Gam(8/2, 1/2) ≈ (1/2)χ2
8

Hence the overall P-value is

P = Pr(χ2
8 ≥ −2 log(T )) = Pr(χ2

8 ≥ 17.71) = 0.024

Thus the combined effect of the four experiments is
significant.
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The beta distribution: This is a distribution with den-
sity

C xα−1(1− x)β−1, 0 ≤ x ≤ 1

where C = Γ(α+β)/
(
Γ(α)Γ(β)

)
. Some examples are:

α = β = 1/2

α = 5, β = 10

α = 50, β = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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We say X ≈ Beta(α, β) if X has this density. Then
Beta(1, 1) is uniform and

E(X) =
α

α + β
, Var(X) =

αβ

(α + β)2(α + β + 1)

If θ = α/(α + β) and V = α + β + 1, then

E(X) = θ, Var(X) =
θ(1− θ)

V

One can show that if Z ≈ Beta(α, β), then

Z ≈ X1

X1 + X2

where X1 ≈ Gam(α, r), X2 ≈ Gam(β, r), and X1 and
X2 are independent. This implies

Z

1− Z
≈ X1

X2
≈ Gam(α, r)

Gam(β, r)
≈ χ2(2α)

χ2(2β)
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Thus if Z ≈ Beta(α, β)

Z

1− Z
≈ α

β

χ2(2α)/2α

χ2(2β)/2β
≈ α

β
F (2α, 2β)

so that Z ≈ Beta(α, β) can be written in terms of
an F -distribution and vice versa. This is in fact how
F -distribution P -values are calculated in many statisti-
cal packages, since the F -distribution density itself has
polynomial decay at infinity.
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The beta density can also be written

f(x) = Cxα−1
1 xβ−1

2

where (x1, x2) are on the line x1 + x2 = 1 for
x1 ≥ 0, x2 ≥ 0. This is an equivalent way of looking
at a beta density, as long as you are careful when you
are integrating: The “dx” on the line x1 + x2 = 1 is
1/
√

2 of the size of “dx” for x on the real line.

The Dirichlet distribution: Once one gets used to
this, one can generalize the beta density to more that
two variables: For example, with a three-dimensional
density

f(x) = Cxα−1
1 xβ−1

2 xγ−1
3 xδ−1

4

on the simplex x1 + x2 + x3 + x4 = 1, xi ≥ 0, for
parameters α, β, γ, δ > 0.
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This is called a Dirichlet density and has very similar
properties to a beta density. In fact, if random variables
X1, X2, X3, X4 have the above Dirichlet distribution
(so that X1 + X2 + X3 + X4 = 1), then the Xi can
be represented

Xi ≈ Yi

Y1 + Y2 + Y3 + Y4
(1 ≤ i ≤ 4)

where the Yi ≈ Gam(αi, r) are independent gamma-
distributed random variables where (α1, . . . , α4) =
(α, β, γ, δ).


