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Nested Hypothesis Tests:
Likelihoods and Likelihood Ratios:

General framework:
H1: Model with n1 parameters
H0: Model with n0 parameters with H0 ⊆ H1

Are the extra parameters really necessary?
Does H1 fit the data any better than H0?

A too-easy example:
Toss a coin 100 times, get 56 heads, 44 tails.

H1: Coin has Pr(H) = p for unknown p
H0: Coin is fair: That is, p = 0.50

Is the extra parameter p really justified by the data?



2

A better example:

Suppose that we observe for 1000 nucleotides
from one strand of DNA:

(A)212 (T)219 (C)253 (G)316

In particular, this implies:
(AT)431 (CG)569

This DNA strand appears CG-rich, but is there
AT or CG bias within the strand? Can we test

H0 : pA = pT and pC = pG ?

even though we are fairly sure that pAT < pCG?
If this is false, there are four parameters,

namely pA, pT , pC , and pG.

This is a nested hypothesis test with
H1: 3 free parameters (pA, pT , pC)
H0: 1 free parameter pA = pT

since pA + pA + pC + pC = 1.
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A general theory for testing nested hypotheses:
We go through four steps:

I. Likelihoods of H0 and H1: Let LH1(p,X) be the
probability of observing the nucleotide counts X. We
assume for simplicity the probability that they are ob-
served in a particular order , so that

LH1(p, X) = LH1(pA, pT , pC , pG, X)

= pA
nA pT

nT pC
nC pG

nG

without any combinatorial coefficients, where

pA + pT + pC + pG = 1

We use the same likelihood function for H0 and H1

with restricted values for H0, so that

LH0(p,X) = LH1(pA, pA, pC , pC , X)

= pA
nA+nT pC

nC+nG

where pA + pC = (1/2)(pA + pA + pC + pC) = 1/2.
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II. Define the maximum likelihood estimator (MLE)
p̂ = p̂(X) of p = (pA, pT , pC , pG) (for H1) as the
solution of

max
p

LH1(p,X) = LH1

(
p̂(X), X

)

Since

log LH1(p, X) = nA log pA + · · ·+ nG log pG

This is the same as solving (for A)

∂

∂pA
log LH1(p, X) =

pA

nA
− pG

nG
= 0

The second terms is because we are assuming that
pA, pC , pT are free with pG = 1 − pA − pT − pC , so
that ∂

∂pA
pG = −1. Similarly

∂

∂pT
log LH1(p, X) =

pT

nT
− pG

nG
= 0

∂

∂pC
log LH1(p, X) =

pC

nC
− pG

nG
= 0
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This implies

pA

nA
=

pT

nT
=

pC

nC
=

pG

nG
= λ

Thus pA+pT +pC+pG = 1 = λ(nA+nT +nC+nG) =
λn, from which it follows that λ = 1/n. Hence the
MLEs are the sample proportions

p̂A =
nA

n
, p̂T =

nT

n
, p̂C =

nC

n
, p̂G =

nG

n

Similarly

log LH0(p,X) = (nA + nT ) log pA + (nC + nG) log pC

where pA + pC = (1/2). Thus

∂

∂pA
log L0(p,X) =

pA

nA + nT
− pC

nC + nG
= 0

or pA/(nA + nT ) = pC/(nC + nG) = λ0 for some λ0.



6

This implies pA+pC = 1/2 = λ0(nA+nT +nC+nG) =
λ0n. Thus λ0 = 1/(2n) and

p̂A = p̂T =
nA + nT

2n
, p̂C = p̂T =

nC + nG

2n

III. We find the estimated likelihood of the data X for
models H1 and H0: Our best guess for the likelihood
of X for H1 is

L̂(H1, X) = LH1(p̂1(X), X)

=
(nA

n

)nA
(nT

n

)nT
(nC

n

)nC
(nG

n

)nG

By the same arguments, the estimated likelihood of X
for H0 is

L̂(H0, X) = LH1(p̂0(X, H0), X)

=

(
nA + nT

2n

)nA+nT
(

nC + nG

2n

)nC+nG
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IV. Finally, the Likelihood Ratio Test (LRT) of H0 with
respect to accepting H1 is to compute and compare

Q = 2 log

(
L̂(H1, X)

L̂(H0, X)

)
≈ χ2

d

where d = n1−n0 is the number of extra parameters in
H1. That is, P = Pr

(
χ2

d ≥ Qobs

)
. Here d = 3−1 = 2,

since H1 has two more parameters. Here

log L̂(H1, X) = 212 log

(
212

1000

)
+ 219 log

(
219

1000

)

+ 253 log

(
253

1000

)
+ 316 log

(
316

1000

)

= −1373.190

log L̂(H0, X) = 431 log

(
431

2000

)
+ 569 log

(
569

2000

)

= −1376.742
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Thus

Q = 2 log

(
L̂(H1, X)

L̂(H0, X)

)

= 2
(
log L̂(H1, X)− log L̂(H0, X)

)

= 2(1376.742− 1373.190) = 7.1034

The P-value for rejecting H0 in favor of H1 is

P = P (χ2
2 ≥ 7.1034) = 0.0287 < 0.05

so that we reject H0. That is, the data show border-
line evidence for strand asymmetry between A and T
and/or between C and G, for data

(A)212 (T)219 (C)253 (G)316

and

(AT)431 (CG)569
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Bayesian Analysis and Conjugate Priors:

Example: Toss a coin n = 10 times. Let X be the
number of heads (0 ≤ X ≤ 10). How should we es-
timate p = Pr(Head)? Here, the likelihood and MLE
are:

L(p,X) = pX(1− p)10−X , p̂(X) =
X

10

But what if X = 0? Is p̂(X) = 0 a reasonable assertion
based on just 10 coin tosses?

One problem may be that we are treating p and X
differently (as a parameter and a random variable, re-
spectively):

We might have a better idea of how to handle odd
questions such as this (and many other odd questions
more generally) if we could somehow put p and X on
the same footing.
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The first step is to force p to be a random variable by
saying that it has a probability distribution π0(p) for
0 ≤ p ≤ 1. This is called a prior distribution for p,
since we have not yet observed X.

The prior distribution π0(p) makes p into a random
variable. That is,

n∑

X=0

∫ 1

0

π0(p)L(p,X) = 1

This means that we can view (p,X) as two random
variables with joint probability distribution

π1(p,X) = π0(p)L(p, X) = π0(p) pX(1− p)10−X

Finally, we notice that X is constant (because we have
just observed it), so that we can form the conditional
or posterior distribution of p given X:
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π1(p | X) =
π0(p)L(p,X)∫ 1

0
π0(z)L(z, X) dz

We can then use the posterior distribution π1(p | X)
to define the Bayes estimator

p̂B(X) =

∫ 1

0

pπ1(p, X) dp =

∫ 1

0
pπ0(p)L(p,X) dp∫ 1

0
π0(p)L(p,X) dp

Note that p̂B(X) makes sense even if X = 0, but
depends on π0(p).

Also, we should be careful when we use this method,
since we may end up having to evaluate not only one,
but two nasty integrals. In contrast, finding MLEs only
requires derivatives but not integrals.
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Example: π0(p) = 1. Then the full likelihood is

π1(p,X) = π0(p)L(p,X) = pX(1− p)10−X

so that the posterior distribution is

π1(p | X) = C(X)pX(1− p)10−X

Note that, as a function of p, the posterior density

π1(p | X) = C(X)pX(1− p)10−X

≈ Beta(X + 1, 11−X)

where Beta(α, β) is the beta distribution with density

Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1
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Since

E
(
Beta(α, β)

)
=

α

α + β

it follows that

p̂B(X) =

∫ 1

0

pπ1(p | X) dp

=
X + 1

12

In particular, if X = 0, p̂B(0) = 1/12.

This argument generalizes: Suppose we chose, instead,
π0(p) = Cp(1− p) or Cp5(1− p)5 or, in general

π0(p) = Cpα−1(1− p)β−1

Then the full likelihood is
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π1(p,X) = π0(p)L(p, X)

= Cpα−1(1− p)β−1pX(1− p)10−X

= Cpα+X−1(1− p)β+10−X−1

≈ Beta(α + X,β + 10−X)

and

p̂B(X) = E
(
Beta(α + X,β + 10−X)

)

=
X + α

α + β + 10

This always gives us an answer, but the answer depends
on the parameters α, β in the prior. If X and 10 (or
their analogs) are much larger than α and β, then the
dependence will be small, but there will still be a de-
pendence. A disadvantage of Bayesian methods is that
there is rarely an obvious and well-motivated prior.
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This interaction between the prior and the likelihood is
a special case of a general situation:

Consider a general family of distributions, for example
Beta(α, β) or Gam(α, β) or Norm(µ, σ2).

Let π0(p, α, β) be a prior distribution from this family.

Then, we say that this family is a conjugate prior (fam-
ily) for the likelihood L(p,X) if

π1(p, α, β | X) = π0(p, α, β)L(p,X)

= π0(p, α1, β1)

is always a member of the same family, where
α1 = α(X) and β1 = β(X). The expressions α(X)
and β(X) are called the updating formulas for α and β.
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In this case, the posterior density π1(p | X) is

Cpα−1(1− p)β−1 pX(1− p)10−X

= Cpα+X−1(1− p)β+10−X−1

so that the beta density family is a conjugate prior
for binomial sampling. The updating formulas are
α1(X) = α + X and β1(X) = β + 10−X.

There are many important examples of conjugate priors
for different types of likelihoods. What typically makes
conjugate priors work is that the likelihood

L(p,X) = pX(1− p)10−X

can be viewed either as a density in p or as a density
in X, although with different normalizing constants.
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Beta densities as a conjugate prior for binomial sam-
pling generalize to multinomial sampling:

Recall that a distribution on the simplex (p1, p2, p3, p4)
(that is, pi ≥ 0 and p1 + p2 + p3 + p4 = 1)
is a Dirichlet distribution D(α1, α2, α3, α4) if

π0(p) = Cpα1−1
1 pα2−1

2 pα3−1
3 pα4−1

4

where

C =
Γ(α1+α2+α3+α4)

Γ(α1)Γ(α2)Γ(α3)Γ(α4)

Suppose that we do n independent multinomial trials
and obtain, in some order,

ni outcomes of Type i (prob. pi each)

for i = 1, 2, 3, 4 and X = (n1, n2, n3, n4). Then the
likelihood is

L(p,X) = pn1
1 pn2

2 pn3
3 pn4

4
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If we multiply L(p,X) = pn1
1 . . . pn4

4 by the prior

π0(p) = Cpα1−1
1 pα2−1

2 pα3−1
3 pα4−1

4

we obtain the posterior

π0(p | X) = CXpα1+n1−1
1 pα2+n2−1

2 pα3+n3−1
3 pα4+n4−1

4

This means that the family of Dirichlet distributions
are a conjugate prior for multinomial sampling with
updating formulas αi(X) = αi + ni. Since

E(pi) =
αi

α1 + α2 + α3 + α4

for a Dirichlet D(α1, α2, α3, α4), we have

E(pi | X) =
αi + ni

α1 + α2 + α3 + α4 + n

for the posterior distribution. If the αi are small, this
is close to the MLE p̂i(X) = ni/n.
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As another example, suppose that X1, X2, . . . , Xn are
independent Poisson random variables. Then the like-
lihood is

L(µ, X1, . . . , Xn) =
n∏

i=1

(
e−µ µXi

Xi!

)

= CX e−nµµ

(∑n

i=1
Xi

)

Note that this is a Poisson density in X, but a gamma
density in µ. If we consider a gamma-density prior for µ

π0(µ, α, β) =
βα

Γ(α)
µα−1 exp(−βµ)

Then the posterior distribution is

π1(µ | X) = CXµα−1e−βµe−nµµS(x)

= C µα+S(X)−1e−(β+n)

where S(X) =
∑n

i=1 Xi.
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Thus gamma densities are a conjugate prior for Poisson
sampling with updating formulas

α(X) = α +
∑n

i=1 Xi, β(X) = β + n

Since the mean of Gam(α, β) is α/β, the Bayes esti-
mator of µ is

p̂B(X) = E
(
Gam(α + S(X), β + n)

)
=

α + S(X)

β + n

for S(X) =
∑n

i=1 Xi. This is close to the MLE for µ:

µ̂(X) =
S(X)

n
= X

It is typical to set π0(µ) = Gam(ε, ε) for ε = 0.001.
This distribution has mean one but, due to the µε−1

singularity at µ = 0, has the vast majority of its mass
very close to 0. For this prior, the estimated value of
the Poisson mean µ for observed X = 0 is

p̂B(0) =
ε

ε + n
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As yet another example, suppose that X1, X2, . . . , Xn

are independent exponentially distributed random vari-
ables where r is the rate (E(Xi) = 1/r). Then

L(r,X1, . . . , Xn) =
n∏

i=1

(
r exp(−rXi)

)

= rn exp(−rS(X)), S(X) =
n∑

i=1

Xi

Since L(r,X) is a gamma density in r, this suggests

π0(r, α, β) = Crα−1e−βr, r ≥ 0

Then the posterior density is

CX π0(r, α, β)L(r,X)

= CX rα−1 exp(−βr) rne−rS(X)

= CX rα+n−1 exp
(−(

β + S(X)
)
r
)

≈ Gam
(
α + n, β + S(X)

)
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The Bayes estimator of r is then

r̂B(X) = E
(
Gam(α + n, β + S(X))

)
=

α + n

β + S(X)

If α, β are small, this is close to the MLE
r̂(X) = 1/X = n/S(X).

Thus the gamma distribution family is a conjugate prior
for both Poisson and exponential sampling, but the role
of n and S(X) are reversed in the updating formulas:

For Poisson sampling:

π1(µ, α, β | X) ≈ Gam
(
α + S(X), β + n

)

while for exponential sampling:

π1(r, α, β | X) ≈ Gam
(
α + n, β + S(X)

)
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Now let’s consider a more difficult problem. Assume
that

X1, X2, . . . , Xn

are independent normal N(µ, σ2). Can we find a con-
jugate prior for one-dimensional normal sampling with
two unknown parameters?

Recall that in the examples before, a likelihood with a
single parameter

p for Bernoulli sampling
µ for Poisson sampling
r for exponential sampling

had a conjugate prior with two parameters, Beta(α, β)
or Gam(α, β). Thus we should expect a conjugate prior
for (µ, σ2) to have four parameters.
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Let’s start by writing down the normal likelihood:

L(µ, σ2, X) =
n∏

i=1

1√
2πσ2

exp
(− 1

2σ2
(Xi − µ)2

)

=
( 1

2πσ2

)n/2

exp
(− 1

2σ2

n∑

i=1

(Xi − µ)2
)

As a function of v = 1/σ2, which is called the precision
of Xi as opposed to the variance, this is a gamma
density:

L(µ, v,X) = CX vn/2 exp
(−v

2

n∑

i=1

(Xi − µ)2
)

≈ Gam
(n + 2

2
,

1

2

n∑

i=1

(Xi − µ)2
)

However, we want a joint density in (µ, v):
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L(µ, v,X) = CX vn/2 exp
(−v

2

n∑

i=1

(Xi − µ)2
)

= CX v(n−1)/2 exp
(−v

2

n∑

i=1

(Xi −X)2
)

×
√

vn

2π
exp

(−vn

2
(X − µ)2

)

Note that the last factor is N(X, 1/vn) in µ, and that∫∞
−∞ L(µ, v, X)dµ is

CX v(n−1)/2 exp
(−v

2

n∑

i=1

(Xi −X)2
)

≈ Gam
(n + 1

2
,

1

2

n∑

i=1

(Xi −X)2
)
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This means that L(µ, v, X) as a density in (µ, v) de-
scribes a two-dimensional density for random variables
(M, V ) defined by, first,

V ≈ Gam
(n + 1

2
,

1

2

n∑

i=1

(Xi −X)2
)

and then, conditional on V , M ≈ N(X, 1
nV ).

To simulate a two-dimensional random variate (µ, σ2)
from this distribution, we would

(i) first simulate V as above
(ii) set σ2 = 1/V , and
(iii) simulate µ ≈ N(X,σ2/n)

For these reasons, this distribution in (µ, σ2) (or (µ, v))
is called the Inverse-Gamma-Normal distribution.
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Usually the inverse-gamma-normal density

L(µ, v, X) = CX v(n−1)/2 exp
(−v

2

n∑

i=1

(Xi −X)2
)

×
√

v

2π
exp

(−vn

2
(X − µ)2

)

is used with priors on v and µ:

π01(v, αε, βε) ≈ Gam(αε, βε) in v

= Cvαε−1e−βεv

π02(µ, µε, vε) ≈ Norm(µε, vε) in µ

= C exp
(−(1/2)vε(µ− µε)

2
)

for four parameters αε, βε, µε, vε, where we ignore fac-
tors that don’t depend on v or µ. Often αε = βε =
0.001, vε = 10−6, and µε = 0.
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For observations X1, X2, . . . , Xn ≈ N(µ, v) in terms
of the precision v,

π1(v, αε, βε | X)

= Cvαε−1e−βεvv(n−1)/2e−
1
2 v

∑n

i=1
(Xi−X)2

≈ Gam
(
αε +

n− 1

2
, βε +

1

2

n∑

i=1

(Xi −X)2
)

π1(µ, µε, vε | X, v)

= Ce−(1/2)vε(µ−µε)
2
e−(1/2)vn(µ−X)2

= C exp

(
−1

2
(vε + nv)

(
µ− vεµε + nvX

vε + nv

)2
)

≈ N

(
vεµε + nvX

vε + nv
, vε + nv

)
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There are several different ways of setting up conjugate
priors for normal sampling. This is only one way.

These formulas leads to the updating formulas for
X1, X2, . . . , Xn ≈ N(µ, v):

For v: αε → αε +
n− 1

2

βε → βε +
1

2

n∑

i=1

(Xi −X)2

For µ: µε → vεµε + nvX

vε + nv

vε → vε + nv

Recall that E(v) = αε/βε for v ≈ Gam(αε, βε), so that
the first two updates imply E(v) = 1/s2

X if αε, βε are
small.
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Thank you for coming.


