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This article is the second in a two-part series in memory of Serge Lang, who
passed away on September 12, 2005. In the first article, which appeared in the May
2006 issue of the Notices, we invited contributions from a number of individuals
who knew Serge on a somewhat personal level. For this part, we sought expositions
which would describe, with certain technical details as necessary, aspects of Serge’s
contribution to mathematical research.

To begin understanding the breadth and depth of Serge’s research endeavors,
we refer to Volume I of his Collected Papers 1 where he outlined his mathematical
career in a number of periods. We list here Lang’s own description of his research,
using only a slight paraphrasing of what he wrote.

1. 1951-1954 Thesis on quasi algebraic closure and related matters
2. 1954-1962 Algebraic geometry and abelian (or group) varieties;

geometric class field theory
3. 1963-1975 Transcendental numbers and diophantine approximation

on algebraic groups
4. 1970 First paper on analytic number theory
5. 1975 SL2(R)
6. 1972-1977 Frobenius distributions
7. 1973-1981 Modular curves, modular units
8. 1974, 1982-1991 Diophantine geometry, complex hyperbolic spaces,

and Nevanlinna theory
9. 1985, 1988 Riemann-Roch and Arakelov theory
10. 1992-2000+ Analytic number theory and connections with spectral

analysis, heat kernel, differential geometry, Lie groups,
and symmetric spaces

For this article, the editors choose to use this list as a guide, though it should be
obvious that we cannot address all facets of Lang’s mathematical research.

In addition to research, Lang’s contribution to mathematics includes, as we all
know, a large number of books. How many books did Lang write? We (the editors)
are not sure how to answer that question. Should we count political monographs,
such as Challenges? How do we count multiple editions and revisions? For example,
he wrote two books entitled Cyclotomic Fields I and Cyclotomic Fields II, and

1Serge Lang: Collected papers. Vol. I-V. Springer-Verlag, New York, 2000.
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which were later revised and published in a single volume, yet his text Algebra:
Revised Third Edition has grown to more than 900 pages and is vastly different
from the original version. In an attempt to determine how many books he wrote,
we consulted the bibliography from Lang’s Collected Papers where he highlighted
the entries which he considered to be a book or lecture note. According to that
list, Lang wrote an astonishing number, namely 60, books and lecture notes as of
1999. Furthermore, he published several items after 1999, there are more books
in production at this time, and a few unfinished manuscripts exist. In 1999 when
Lang received the Leroy P. Steele Prize for Mathematical Exposition, the citation
stated that “perhaps no other author has done as much for mathematical exposition
at the graduate and research levels, both through timely expositions of developing
research topics . . . and through texts with an excellent selection of topics”. We
will leave to others to assess the impact of Serge Lang’s books in the education of
mathematics students and mathematicians throughout the world; this topic seems
to be a point of discussion properly addressed by historians as well as by history
itself.

On February 17, 2006, a memorial was held at Yale University in honor of Serge
Lang. At that time, Anthony and Cynthia Petrello, friends of Serge’s since the
early 1970’s, announced their intention of creating a fund for the purpose of fi-
nancing mathematical activities in memory of Lang. Precise plans for the use of
these funds, including the formation of a Lang Prize in Mathematics, are currently
under development, at the Petrellos’ request, by Peter Jones, Jay Jorgenson, and
the Yale Mathematics Department. As mathematicians, we (the editors) express
our sincere thanks to Anthony and Cynthia Petrello for their generous support of
mathematical research. As teachers, we see the story of Serge, Anthony, and Cyn-
thia as a wonderful example of the type of life-long friendship that can develop
between instructors and students. As editors of the two articles on Lang, we are
in awe at being shown yet another way in which Serge has influenced the people
he encountered. We look forward to see the results from the development of the
“Lang Fund” and its impact on the mathematical community.

Serge Lang’s early years
John Tate

These remarks are taken from my talk at the Lang Memorial at Yale on Lang and
his work in the early years — roughly 1950-1960. Lang’s papers from this period
fill less than one half of the first of the five volumes of his collected works. His
productivity was remarkably constant for more than 50 years, but my interaction
with him was mostly early on. We were together in Princeton as graduate students
and postdocs from 1947 to 1953, and in Paris during 1957-58.

In the forward of his Collected Papers, Lang takes the opportunity to “express
once more” his appreciation for having been Emil Artin’s student, saying “I could
not have had a better start in my mathematical life”. His Ph.D. thesis was on
quasi-algebraic closure and its generalizations. He called a field k a Ci field if for
every integer d > 0, every homogeneous polynomial of degree d in more than di

variables with coefficients in k has a non-trivial zero in k. A field is C0 if and only
if it is algebraically closed. Artin realized that Tsen’s proof (1933) that the Brauer
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group of a function field in one variable over an algebraically closed constant field
is trivial was by showing that such a field is C1, and called that property quasi-
algebraic closure. In analogy with Tsen’s theorem, he conjectured that the field of
all roots of unity is C1. This is still an open question. In his thesis Lang proved
various properties of Ci fields and showed that a function field in j variables over
a Ci field is Ci+j . He also proved that the maximal unramified extension of a local
field with perfect residue field is C1. Artin had also conjectured that a local field
with finite residue field is C2. Lang could prove this for power series fields, but
not for p-adic fields. In 1966 it became clear why he failed. G. Terjanian produced
an example of a quartic form in 18 variables over the field Q2 of 2-adic numbers
with no zero. Terjanian found his example a few months after giving a talk in the
Bourbaki Seminar (Nov.1965) on a remarkable theorem of Ax and Kochen. Call a
field Ci(d) if the defining property of Ci above holds for forms of degree d. Using
ultrafilters to relate

∏
p Qp to

∏
p Fp((t)), they showed that for each prime p, Qp

has property C2(d) for all but a finite set of d. In that sense, Artin was almost
right.

Lang got his Ph.D. degree in 1951. After that he was a postdoc at Princeton
for a year and then spent a year at the Institute for Advanced Study before going
to Chicago where he was mentored by Weil, if anyone could mentor Serge after his
Ph.D. He and Weil wrote a joint paper generalizing Weil’s theorem on the number
of points on a curve over a finite field. They show that the number N of rational
points on a projective variety in Pn of dimension r and degree d defined over a
finite field satisfies

|N − qr| ≤ (d− 1)(d− 2)qr− 1
2 + Aqr−1,

where q is the number of elements in the finite field and A is a constant depending
only on n, d and r. (Here and in the following, “variety defined over k” means
essentially the same thing as a geometrically irreducible k-variety.) From this result
they derive corollaries for arbitrary abstract varieties. They show, for example, that
a variety over a finite field has a rational zero-cycle of degree 1. The paper is a
very small step towards Weil’s conjectures on the number of points of varieties over
finite fields which were proved by Deligne.

Lang proved for Abelian varieties in 1955 and soon after for arbitrary group
varieties, that, over a finite field k, a homogeneous space for such a variety has a
k-rational point. A consequence is, that for a variety V over k, a “canonical map”
α : V → Alb(V ) of V into its Albanese variety can be defined over k, and is then
unique up to translation by a k-rational point on Alb(V ).

In 1955 Lang dedicated to Artin a paper in which he generalized Artin’s reci-
procity law to most unramified abelian extensions (those “of Albanese type”) of
a function field K of arbitrary dimension over a finite constant field k. Let V/k
be a projective normal model for K/k. For each finite separable extension L/K,
let VL be the normalization of V in L, let ZL denote the group of 0-cycles on VL

rational over the constant field kL of L, Z0
L those of degree 0, and Za

L the kernel
of the canonical map of Z0

L into AL(kL), the group of kL-rational points on the
Albanese variety AL of VL. Let CL := ZL/Za

L denote the group of classes of 0-
cycles on VL defined over kL. Lang calls L/K “of Albanese type” if its “geometric
part” Lk̄/Kk̄ is obtained by pullback, via a canonical map α : V = VK → AK ,
from a separable isogeny B → AK defined over the algebraic closure k̄ of k. Such
an extension is abelian if the isogeny and α are defined over k and the kernel of
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the isogeny consists of k-rational points. If the Neron-Severi group of V is torsion
free, then every finite abelian extension of degree prime to the characteristic is of
Albanese type. Lang shows that the map which associates to an extension L/K
its trace group SL

KCL gives a one-one correspondence between the set of abelian
extensions L/K of Albanese type and the set of subgroups of finite index in CK . He
also shows, in exact analogy with Artin’s reciprocity law, that the homomorphism
ZK → Gal(L/K) which takes each prime rational 0-cycle P to its associated Frobe-
nius automorphism (P, L/K) vanishes on the Albanese kernel Za

K and induces an
isomorphism CK/SL

KCL ≈ Gal(L/K). Moreover, from Lang’s geometric point of
view, this reciprocity law becomes transparent and quite easy to prove.

A year later, in his first paper written in French, Lang defined the analogue
of Artin’s non-abelian L-functions for Galois coverings f : W → V and proved
with them the analogue of Tchebotarov’s density theorem. He also generalized his
reciprocity law for abelian coverings W → V of Albanese type described above, to
any covering obtained by pullback of a separable isogeny B → A of commutative
group varieties, via a map α : V → A defined outside a divisor. These coverings,
which he calls “de type (α, A)” can be highly ramified, and Lang notes that in the
case V is a curve, taking Rosenlicht’s generalized Jacobians for A and throwing in
constant field extensions, one gets all abelian coverings, so that his theory recovers
the classical class field theory over global function fields.

These papers were the beginning of higher dimensional class field theory and
earned Lang a Cole Prize in 1959. He acknowledges his indebtedness to others.
In his paper on unramified class field theory, he expresses his great and sincere
appreciation to Chow, Matsusaka and Weil for discussions on the algebraic aspects
of the Picard and Albanese varieties and for proving the theorems he needed for
the work. (In the L-series paper he also thanks Serre, writing “Je ne voudrais pas
terminer cette introduction sans exprimer ma reconnaissance à J.-P. Serre, qui a
bien voulu se charger de la corection des phautes d’orthografe.” I too thank Serre
here, for pointing out an error in my first description of these results of Lang.)

During the next couple of years Lang collaborated with many people. In a
paper “Sur les revêtements nonramifiés” he and Serre proved that coverings in
characteristic p behave more or less as in characteristic 0, provided the variety is
projective, and applied this to abelian varieties in order to show that every covering
is given by an isogeny. After a paper with Chow on the birational invariance of
good reduction, Lang collaborated with me on a study of the Galois cohomology of
abelian varieties. We were able to show, for each positive integer m, the existence
of a curve of genus 1 over a suitable algebraic number field K, the degrees of whose
divisors defined over K are exactly the multiples of m. Over a p-adic field F we
essentially proved the prime-to-p part of the duality theorem

Hom(H1(Gal(F̄ /F ), A(F̄ )),Q/Z) = Â(F )

for dual abelian varieties A and Â, without stating it that way.
Then, after a paper with Kolchin applying the theory of torsors for algebraic

groups to the Galois theory of differential fields, Lang published with Néron a
definitive account of the “theorem of the base” - the finite generation of the Néron-
Severi group of divisors modulo algebraic equivalence on a variety. Néron had
proved this earlier but here the proof is made more transparent. Using a criterion
of Weil, they show that the theorem follows from the Mordell-Weil theorem for
abelian varieties over function fields, which they prove in the usual way.
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I view this as the end of Lang’s first period of research, in which he applied
Weil’s algebraic geometry to class field theory and to questions of rational points
on varieties with great success. At this time (∼ 1960) he began to consider questions
of integral points on curves and varieties and function field analogues of the Thue-
Siegel-Roth theorem on diophantine approximations, a new direction, in which his
ideas of generalization and unification of classical results had great influence.

In addition to doing outstanding research, Lang has had a tremendous influence
as a communicator, teacher, and writer, as everyone knows. In closing I would like
to mention a few examples of these things from the period I am writing about.
Wonderful as it was, our graduate training with Artin was almost totally one-
dimensional and non-geometric: number fields and function fields in one variable.
In the next years Serge helped me become comfortable with higher dimensional
things such as the Jacobian, Picard and Albanese varieties over arbitrary ground
fields, and also with “reduction mod p ”, which was not such a simple matter work-
ing with Weil’s Foundations in those days before schemes. Serre tells me it was
Lang who made him appreciate the importance of the Frobenius automorphism.
In general, Serge, who travelled regularly to Paris, Bonn, Moscow and Berkeley,
was an excellent source of information about what was happening in the world of
mathematics. He was an energetic communicator who seemed driven to publish.
The Artin-Tate book on Class Field Theory is a good example. Lang took the
original notes of the seminar, typed them, continued for years to urge their publi-
cation (over my perfectionist and unrealistic objections), and finally arranged for
their publication by Addison-Wesley. His name should be on the cover.

University of Texas at Austin
tate@math.utexas.edu

Serge Lang’s early work on Diophantine and Algebraic Geometry
Alexandru Buium

In this article we review some of Serge Lang’s early work on Diophantine equa-
tions and algebraic geometry. We are mainly concerned here with papers written
before the 70’s (roughly the first volume of his Collected Papers [44]).

Diophantine equations are polynomial equations f(x1, ..., xn) = 0 with rational
coefficients or, more generally, with coefficients in fields K that have an “arithmetic
flavor” (e.g. number fields, function fields, local fields, finite fields, e.t.c.) The main
question is to determine whether such an equation has solutions with coordinates
in K and, more generally, to “count” or “construct” all such solutions. Morally one
expects “many” solutions if the degree d of f is “small” with respect to the number
n of variables and one expects “few” solutions if d is “big” with respect to n. In
the language of algebraic geometry systems of polynomial equations correspond to
varieties (or schemes) V over K and solutions correspond to K−points P ∈ V (K)
of our varieties. According to conjectures made by Lang in the 80’s, the above
conditions on d and n, controlling the size of the set of solutions to f = 0, should
be replaced by precise algebro-geometric and complex analytic properties of the
varieties in question.

Most of Lang’s early work stems from his interest in Diophantine equations. In
his thesis [22] Lang obtained remarkable new results on polynomial equations of
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low degree over local fields and function fields. Diophantine equations naturally led
Lang [23] to the study of algebraic groups and their homogeneous spaces. Closely
related to these are Lang’s class field theory of function fields of characteristic p
[24] and his work with Néron [29] on the Mordell-Weil theorem over function fields
of any characteristic. From the latter Lang passed to his investigation, in the line
of Mordell and Siegel, of finiteness of integral points [30] and division points [31]
on curves. In [30] [31] he formulated his celebrated conjecture on subvarieties of
semiabelian varieties. (Later [41] [42] [43] Lang came back to this circle of ideas by
formulating his Diophantine conjectures for arbitrary varieties; we will not review
this aspect of Lang’s later work here.) Problems on integral points are intertwined
with problems in the theory of Diophantine approximation while the latter shares
its spirit and methods with transcendence theory; in both these theories Lang made
important contributions [32] [33] [34] [38] [39] [40] [5].

These are but a few of the themes that Lang pursued in his early work. Lang’s
impact on these themes was substantial. Not only he contributed fundamental
results but, at the same time, he reorganized and systematized each of these subjects
by attempting to clearly define their scope, formulating their basic problems, and
making sweeping conjectures. In what follows we will review these themes in some
detail.

Equations of small degree over local fields. E. Artin defined quasi- alge-
braically closed fields (in Lang’s terminology, C1 fields [22]) as fields K such that
any form of degree d in n variables with n > d and coefficients in K has a non-
trivial zero in K. He noted that a method of Tsen [60] implies that function fields
of one variable over an algebraically closed field are C1 and conjectured that finite
fields are C1; this was proved by Chevalley [9]. Artin also conjectured that certain
“local fields”, such as Qur

p (the maximum unramified extension of the p−adic field),
are C1. This conjecture was proved by Lang in his thesis [22]; here is his strategy.
Lang first uses Witt coordinates to transform the equation f = 0 with coefficients
in K = Qur

p into an infinite system of equations f0 = f1 = f2 = .... = 0 in infinitely
many variables with coefficients in the algebraic closure k of the prime field Fp.
He is able to solve this infinite system in an algebraically closed extension k1 of k
by purely algebro-geometric considerations; here the hypothesis on the degree d is
used to control the dimensions of the algebraic sets defined by various truncations
of the infinite system. From the solution of the system in k1 he gets a solution
of f = 0 in K1, a complete field with residue field k1. Next he specializes this
solution to a solution in K̂, the completion of K. Finally, from a solution in K̂ he
gets solutions in K itself via a beautiful argument involving a variant of “Newton
approximation”. The proof outlined above contained a number of fruitful new ideas
that provided starting points for further developments by other mathematicians.
The step involving “Newton approximation” is one of the origins of M. Artin’s work
on approximating formal solutions to algebraic equations [4] which was crucial in
his work on moduli. The viewpoint according to which equations over K̂ can be
transformed into infinite systems of equations over k was put into a general context
by M. Greenberg [19] and has been intensely used ever since; in particular it plays
a role in Raynaud’s work [54] [55] on Lang’s conjecture [31] on division points; cf.
the discussion below.
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Points on homogeneous spaces over finite fields. In [23] Lang proves his
celebrated theorem that if Fq is a finite field then any homogeneous space H/Fq

for an algebraic group G/Fq has an Fq−point. The proof is beautifully simple and
runs as follows. Let G(k) → G(k), x 7→ x(q) be the q−power Frobenius map on
k−points where k is the algebraic closure of Fq. Then Lang proves that the map
G(k) → G(k), x 7→ x−1x(q) is surjective. He then takes any point y0 ∈ H(k). By
transitivity of the G−action there is a point x0 ∈ G(k) such that x0y

(q)
0 = y0. By

surjectivity of x 7→ x−1x(q) there is a point x1 ∈ G(k) such that x0 = x−1
1 x

(q)
1 .

Then x−1
1 x

(q)
1 y

(q)
0 = y0 hence (x1y0)(q) = x1y0 so one finds the desired point x1y0 ∈

H(Fq). Lang’s theorem generalizes a result of F. K. Schmidt about elliptic curves
and also generalizes a result of Chatelet who had proved that if a variety over Fq

becomes isomorphic over the algebraic closure of Fq to a projective space Pn then
the variety is already isomorphic over Fq to Pn.

In [24], [25], [23] Lang uses the map x 7→ x−1x(q) as a key ingredient in his
class field theory for functions fields over finite fields (equivalently for coverings of
varieties over finite fields). He shows that abelian coverings are essentially induced
by appropriate isogenies of commutative algebraic groups (of which x 7→ x−1x(q)

is a basic example) and he introduces his reciprocity mapping which turns out
to have the expected properties. It is interesting to note that this function field
theory was developed (long) after E. Artin’s work in the 20’s [3] on its number
field prototype; usually, in the history of number theory, the number field theorems
are being proved after their function field analogues. (Cf. the discussion of the
Mordell conjecture below.) In the case at hand the function field analogue had to
wait until the necessary algebro-geometric tools (especially the algebraic theory of
abelian varieties) became available.

Finite generation of points of abelian varieties over function fields.
Lang was actively involved [26], [27], [28] in establishing the foundations of the
algebraic theory of abelian varieties, following the pioneering work of Weil, Chow,
Matsusaka. With this theory at hand, Lang and Néron [29] were able to provide
elegant proofs for some basic finiteness theorems in algebraic geometry. Néron had
proved [50] the “Néron-Severi” theorem of the base stating that the group D(V )
of divisors on a variety V (over an algebraically closed field k) modulo the group
Da(V ) of divisors algebraically equivalent to 0 is finitely generated. In [29] Lang
and Néron show how to reduce the proof of the finite generation of D(V )/Da(V )
to proving the finite generation of a group of the form A(K)/τB(k) where A is an
abelian variety over a function field K over k and (B, τ) is the K/k−trace of A.
Then they prove the finite generation of A(K)/τB(k), which is the “Mordell-Weil”
theorem in the function field context. Recall that the number field version of the
Mordell-Weil theorem asserts that, for any abelian variety A over a number field
K the group A(K) is finitely generated. The latter was conjectured by Poincaré,
proved by Mordell [48] in case dim A = 1, K = Q, and by Weil [48] in general.
Here, again, the number field theorem preceded the function field theorem.

Integral points, rational points, and division points. Lang became inter-
ested in questions related to the Mordell conjecture around 1960; this conjecture
and the impact of Lang’s insights into it have a long history. We briefly sketch
the evolution of this circle of ideas below; our discussion is inherently incomplete
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and is only meant to give a hint as to the role of some of Lang’s early ideas on
the subject. Mordell [48] had conjectured that a non-singular projective curve V
of genus g ≥ 2 over a number field K has only finitely many points in K. In
particular an equation f = 0 where f is a non-singular homogeneous polynomial
of degree ≥ 4 in 3 variables with Q−coefficients should have, up to scaling, only
finitely many solutions in Q. Siegel [58] proved, using Diophantine approximations,
that if V is an affine curve over a number field K, of genus g ≥ 1, then V has only
finitely many integral points (i.e. points with coordinates in the ring of integers
of K). Mahler [45] conjectured that the same holds for S−integral points (S a
finite set of places) and he proved this for g = 1 and K = Q. In [30] Lang proves
Mahler’s conjecture by revisiting the arguments of Siegel and Mahler in the light
of the new developments in Diophantine approximations (Roth’s Theorem) and
abelian varieties (especially the Lang-Néron paper [29]). Lang also makes, in [30],
a conjecture which later, in [31], he strengthens to what came to be known as the
Lang conjecture (on subvarieties of semiabelian varieties):

(*) Let G be a semiabelian variety over an algebraically closed field F of charac-
teristic 0, let V ⊂ G be a subvariety, and let Γ ⊂ G be a finite rank subgroup.
Then V contains finitely many translates Xi of algebraic subgroups of G such that
V (F ) ∩ Γ ⊂ ∪iXi(F ).

Here, by Γ of finite rank, one understands that dimQ Γ ⊗Q < ∞. The weaker
version of Conjecture (*) stated in [30] only assumes Γ is finitely generated; this is
a reformulation and generalization of a conjecture of Chabauty [8]. A proof in case
V is a curve, G is a linear torus, and Γ is finitely generated is given by Lang in
[36] using Diophantine approximations. Lang remarks in [30] that Conjecture (*)
(for Γ finitely generated) implies the Mordell conjecture; indeed if V is a curve of
genus ≥ 2 defined over a number field K then one lets F be the algebraic closure
of K, one embeds V into its Jacobian A and notes that V (K) = A(K) ∩ V (F ).
But A(K) is finitely generated, by the Mordell-Weil Theorem, so V (K) is finite
and the Mordell conjecture follows. In a similar vein Lang conjectures in [30] that
if V is a non-singular projective curve over a function field K of characteristic zero
such that V (K) is infinite then V can be defined over the constants of K; this is
the Mordell conjecture over function fields of characteristic zero. Lang proves in
[30] that a curve as in the latter conjecture cannot have infinitely many points of
bounded height; this implies an analogue of Siegel’s Theorem [58] for curves over
function fields of characteristic zero. In the same paper [30] Lang conjectures that

(**) If V is an affine open set of an abelian variety over a number field K and S
is a finite set of places of K then the set of S−integral places of V is finite.

The Mordell conjecture for curves over function fields of characteristic zero was
proved by Manin [46]. Subsequently other proofs and new insights were provided
[18], [56], [51], [2], [59], [12], e.t.c. In Manin’s work the question arose if a curve,
embedded into its Jacobian, contains only finitely many torsion points. This was
independently asked by Mumford and came to be known as the Manin-Mumford
conjecture. In [31] Lang stated Conjecture (*) so as to make the Mordell conjecture
and the Manin-Mumford conjecture special cases of one and the same conjecture.
The Manin-Mumford conjecture was proved by Raynaud [54] and, in the same
year, Faltings [13] proved the original Mordell conjecture. Faltings’ proof did not
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involve Diophantine approximations; later Vojta [47] provided a completely different
proof of the Mordell conjecture involving Diophantine approximations. This led to
another breakthrough by Faltings [9] in the higher dimensional case followed by
more work of Vojta [62]. The full Lang conjecture (*) was subsequently proved by
McQuillan [47] based partly on ideas of Hindry [20] and Raynaud about how to
reduce the case “Γ of finite rank” to the case “Γ finitely generated”. For curves
over function fields in characteristic p a remarkably short proof of a variant of the
Lang conjecture (*) was given by Voloch [63]; cf. also [1]. Conjecture (**) was
proved by Faltings [9]; function field analogues of Conjecture (**) were proved in
[52], [7], [64].

We would like to close this discussion by noting that the Lang conjecture (*)
is a purely algebro-geometric statement, i.e. a statement about varieties over an
algebraically closed field F , and one could expect a purely algebro-geometric proof
of this conjecture (in which the arithmetic of a global field of definition contained
in F doesn’t play any role). Implicit in Lang’s viewpoint was that the Mordell
conjecture could be attacked via the Lang conjecture (*); the whole arithmetic in
the proof could then be concentrated into the Mordell-Weil Theorem. The decisive
breakthroughs in the subject (by Manin and Faltings) went the other way around:
the Mordell conjecture was proved directly (and then the Lang conjecture (*) fol-
lowed by work of Raynaud, Hindry, McQuillan). A proof along Lang’s original
plan of attack was given in [4] where the Lang conjecture (*), in the case A has
no quotient defined over a number field and V is non-singular, was proved “with-
out global field arithmetic”; no such proof is known for A defined over a number
field. The proof in [4] had a key complex analytic ingredient; Hrushovski [15] saw
how to replace this ingredient by an argument from mathematical logic (model the-
ory) which also applied to function fields in characteristic p. In characteristic zero,
Hrushovski’s model theoretic argument can be rephrased, in its turn, as an entirely
algebro-geometric argument [53].

Diophantine approximations and transcendence. A surprising discovery
of Lang [32] was that if β is a quadratic real irrational number and c ≥ 1 then the
number of integers q with |q| ≤ B such that 0 < qβ−p < c|q|−1 for some integer p is
a multiple of log B +O(1). This was in sharp contrast with the known fact that for
c sufficiently small the inequality |qβ − p| < c/q has only finitely many solutions.
Lang further explored asymptotic approximations in [33], [35], [34]. As already
mentioned Diophantine approximations are closely related to Lang’s conjecture on
intersections of subvarieties of algebraic groups with finitely generated subgroups.
Partially motivated by this circle of ideas Lang conjectured [37] strong inequali-
ties for heights of points in algebraic groups; these conjectures roughly replaced
heights in inequalities following from work of Mahler, Siegel, and Roth by loga-
rithmic heights. The subject of Diophantine approximations evolved spectacularly
after the 70’s mainly due to breakthroughs by Baker, Bertrand, Bombieri, Brow-
nawell, Faltings, Feldman, Lang, Masser, Nesterenko, Philippon, Roy, Schmidt,
Vojta, Waldschmidt, Wüstholz, and many others. In particular the following con-
jecture of Lang was recently proven by David and Hirata-Kohno [11], [10] (following
work of Ably and followed by a generalization by Gaudron [16]): if E is an elliptic
curve over a number field K and φ is a rational function on E/K then there is a
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constant c > 0 such that for any point P ∈ E(K) which is not a pole of φ one has

|φ(P )| ≥ (ĥ(P ) + 2)−c,

where ĥ is the Néron-Tate height. Lang’s original form of this conjecture [37]
actually makes the constant c more explicit in terms of E/K and φ; in this more
precise form the conjecture is still open. We refer to [11] for a history of work on this
conjecture of Lang. For an in-depth presentation of Diophantine approximations
on linear groups up to the year 2000 we refer to [65]. For more on Diophantine
approximations on abelian varieties we refer to [9], [43], [49].

In [38] Lang proved a conjecture of Cartier stating that if G is an algebraic
group over a number field K and α ∈ (Lie G)(K) is such that t 7→ expG(tα) is
not an algebraic function then exp(α) is transcendental over K. For G a linear
group this reduces to the classical result about the exponential function. The
novelty comes from the non-linear case; in case G is an abelian variety Lang’s
result is a transcendence result for values of theta functions. Lang derived the
above theorem from his transcendence criterion generalizing the method of Gelfond
[17] and Schneider [57]. His criterion says the following. Let K be a number field
and let g1, ..., gn be meromorphic functions on C of finite order ρ such that the field
K(g1, ..., gn) has transcendence degree ≥ 2 over K. Assume d/dt sends K[g1, ..., gn]
into itself. Let w1, ..., wm ∈ C be distinct complex numbers such that gi(wj) ∈ K.
Then m ≤ 10ρ[K : Q]. Using ideas of Schneider, Lang extended his transcendence
criterion to meromorphic functions of several variables in [39], [40]. In particular
in [40] he derives the celebrated “Theorem on the 6 exponentials”: if β1, β2 ∈ C
are Q−linearly independent and z1, z2, z3 ∈ C are Q−linearly independent then
not all 6 numbers eβizj are algebraic. (Apparently this had been known to Siegel;
Lang rediscovered the result and his proof was the first published proof.) In the
same vein Lang proves that if A is an abelian variety over a number field K and
Γ ⊂ A(K) is a subgroup of rank ≥ 7 contained in a 1−parameter subgroup of A then
this 1−parameter subgroup is algebraic, i.e. an elliptic curve. Later, using deep
analytic arguments, Bombieri and Lang [5] extended this theory to s−parameter
subgroups. For a comprehensive survey of transcendence up to the year 1997 we
refer to [15].
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Serge Lang’s contributions to the theory of transcendental numbers2

Michel Waldschmidt

When Serge Lang started to work on transcendental number theory in the early
1960’s, the subject was not fashionable. It became fashionable only a few years
later, thanks to the work of S. Lang certainly, but also to the contributions of
A. Baker. At that time the subject was considered as very technical, not part
of the main stream, and only a few specialists were dealing with it. The proofs
were somewhat mysterious: why was it possible to prove some results while other
conjectures resisted?

With his outstanding insight and his remarkable pedagogical gifts, Lang comes
into the picture and contributes to the subject in at least two very different ways: on
the one hand he simplifies the arguments (sometimes excessively) and produces the
first very clear proofs which can be taught easily; on the other hand he introduces

2Editor’s note: An expanded version of Waldschmidt’s contribution is published in: Les con-
tributions de Serge Lang à la théorie des nombres transcendants, Gazette des Mathématiciens,
SMF (Société Mathématique de France), 108 avril 2006, 35–46.
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new tools, like group varieties, which put the topic closer to the interests of many
a mathematician.

His proof of the Six Exponentials Theorem is a good illustration of the simplicity
he introduced in the subject. His arguments are clear, one understands for instance
why the construction of an auxiliary function is such a useful tool. Probably nobody
knows so far why the arguments do not lead to a proof of the four exponentials
conjecture, but this is something which will be clarified later only. Several math-
ematicians knew the Six Exponentials Theorem; Lang was the first to publish its
proof (a few years later, K. Ramachandra rediscovered it).

Another nice example is the so–called Schneider–Lang criterion. Schneider had
produced a general statement on the algebraic values of meromorphic functions
already in 1949. This statement of Schneider is powerful, it includes a number of
transcendence results, and it was the first result containing at the same time the
Hermite–Lindemann Theorem on the transcendence of log α, Gel’fond–Schneider
solution of Hilbert’s seventh problem on the transcendence of αβ and the Six Ex-
ponentials Theorem. However Schneider’s criterion was quite complicated, the
statement itself included a number of technical hypotheses. Later in 1957 (in his
book on transcendental number theory) Schneider produced a simplified version,
dealing with functions satisfying differential equations (at the cost of loosing the
Six Exponentials Theorem from the corollaries — but Schneider did not state this
theorem explicitly anyway). S. Lang found nice hypotheses which enabled him to
produce a simple and elegant result.

Lang also extended this Schneider–Lang criterion to several variables, again us-
ing ideas of Schneider (which he introduced in 1941 for proving the transcendence of
the values B(a, b) of Euler’s Beta function at rational points). Lang’s extension to
several variables involves Cartesian products. M. Nagata suggested a stronger state-
ment involving algebraic hypersurfaces. This conjecture was settled by E. Bombieri
in 1970, using a generalization in several variables of Schwarz’ Lemma which was ob-
tained by Bombieri and Lang, using also some deep L2 estimates from Hörmander.
It is ironical that Bombieri’s Theorem is not required, but the statement with
Cartesian product suffices, for the very surprising proof of Baker’s Theorem (and
its extension to elliptic curves) found by D. Bertrand and D. W. Masser in 1980.

The introduction by S. Lang of group varieties in transcendental number theory
followed a conjecture of Cartier, who asked him whether it would be possible to
extend Hermite–Lindemann Theorem from the multiplicative group to a commu-
tative algebraic group over the field of algebraic numbers. This is the result that
Lang proved in 1962. At that time there were a few transcendence results (by Siegel
and Schneider) on elliptic functions and even Abelian functions. But Lang’s intro-
duction of algebraic groups in this context was the start of a number of important
developments in the subject.

Among the contributions of Lang to transcendental number theory (also to Dio-
phantine Approximation, Diophantine Geometry), the least ones being not his many
conjectures which shed a new light on the subject. On the contrary he had a way
of considering what should be the situation which was impressive. Indeed he suc-
ceeded to get rid of the limits from the existing results and methods. He made
very few errors in his predictions, especially if we compare with the large number
of conjectures he proposed. His description of the subject will be a guideline for a
very long time.
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Lang’s work on modular units and on Frobenius distributions3

David E. Rohrlich

In 1972 Lang joined the Department of Mathematics of Yale University, where
he remained a faculty member until his retirement. The move to Yale coincided
with a change of direction in Lang’s research, a change which reflected a broader
trend in number theory as a whole: Whereas the theory of automorphic forms had
previously been the exclusive domain of specialists, by the early seventies modular
forms and the Langlands program were playing a central role in the thinking of
number theorists of a variety of stripes. In Lang’s case these influences were par-
ticularly apparent in the work with Kubert on modular units and in the work with
Trotter on Frobenius distributions.

1. Modular units Two brief notes on automorphisms of the modular function
field (articles [1971c] and [1973] in the Collected Papers) signaled Lang’s developing
interest in modular functions, but his primary contribution in this domain was the
joint work with Kubert on modular units, expounded in a long series of papers from
1975 to 1979 and subsequently compiled in their book Modular Units, published in
1981. The work has two distinct components: the function theory of modular units
on the one hand and the application to elliptic units on the other.

1.1. The function-theoretic component. In principle, the problem considered by
Kubert and Lang can be formulated for any compact Riemann surface X and any
finite nonempty set S of points on X. Let CS be the subgroup of the divisor class
group of X consisting of the classes of divisors of degree 0 which are supported on S.
If one prefers, one can think of CS as the subgroup of the Jacobian of X generated
by the image of S under an Albanese embedding. In any case, the problem is to
determine if CS is finite, and when it is finite to compute its order.

In practice, this problem is rarely of interest: if the genus of X is ≥ 1 then
for most choices of S we can expect that CS will be the free abelian group of rank
|S|−1, and there is nothing further to say. However in the work of Kubert and Lang
X is a modular curve and S its set of cusps. In this case Manin [18] and Drinfeld [9]
had already proved the finiteness of CS , but their proof rested on a clever use of the
Hecke operators and gave no information about the order of CS . Kubert and Lang
found an altogether different proof of the Manin-Drinfeld theorem in which the
whole point was to exhibit a large family of functions on X with divisorial support
on S. (These functions, by the way, are the “modular units.” If RS is the subring
of the function field of X consisting of functions holomorphic outside S then the
modular units are indeed the elements of the unit group R×S of RS .) In optimal
cases – in particular when X is the modular curve usually denoted X(N) and N
is a power of a prime p ≥ 5 – Kubert and Lang were able to deduce an explicit
formula for |CS | in terms of certain “Bernoulli-Cartan numbers” closely related to

3Editor’s note: In addition to contributions to both Notices articles about Lang, David Rohrlich
has also written the following piece: Serge Lang, Gazette des Mathématiciens, SMF (Société
Mathématique de France), 108 avril 2006, 33–34.
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the generalized Bernoulli numbers b2,χ which appear in formulas for the value of a
Dirichlet L-function L(s, χ) at s = −1.

This work found immediate application in the proof by Mazur and Wiles [20] of
the main conjecture of classical Iwasawa theory, and since then it has found many
other applications as well. But quite apart from its usefulness, the work can be
appreciated as a counterpoint to the “Manin-Mumford conjecture,” enunciated by
Lang in an earlier phase of his career (see [1965b]) in response to questions posed
by the eponymous authors. The conjecture asserts that the image of a curve X
of genus ≥ 2 under an Albanese embedding intersects the torsion subgroup of the
Jacobian of X in only finitely many points. A strong form of the conjecture was
proved by Raynaud in 1983 [23], and the subject was subsequently enriched by
Coleman’s theory of “torsion packets” [5]: a torsion packet on X is an equivalence
class for the equivalence relation

P ≡ Q ⇔ The divisor n(P −Q) is principal for some integer n ≥ 1

on the points of X. Of particular relevance here is the proof by Baker [1] of a
conjecture of Coleman, Kaskel, and Ribet, from which it follows that for most
values of N (including in particular N = pn with p outside a small finite set) the
cuspidal torsion packet on X(N) consists precisely of the cusps. Thus the results of
Kubert and Lang provide one of the relatively rare examples of a curve for which the
order of the subgroup of the Jacobian generated by the image under an Albanese
embedding of a nontrivial torsion packet on the curve has been calculated explicitly.

1.2. Elliptic units. Let us now view modular functions f as functions on the
complex upper half plane H rather than on the modular curves. Given an imaginary
quadratic field K we can then embed K in C and evaluate f at points τ ∈ K∩H. It
has been known since the time of Kronecker and Weber that for appropriate choices
of f and τ the values f(τ) generate ray class fields L of K, and if f is in addition a
modular unit then f(τ) is a unit of L. Roughly speaking, the group of elliptic units
of L is the group of units obtained in this way, and a major theme of the theory
is that the index of the group of elliptic units in the group of all units of L should
be closely related to the class number of L. Achieving an optimal statement of this
sort has proved to be an incremental process. Kubert and Lang built on the work
of Siegel [28], Ramachandra [22], and especially Robert [24], and they also drew
inspiration from Sinnott [29], who had solved the analogous problem which arises
when the base field K is replaced by Q (the role of the elliptic units is then played
by the cyclotomic units). In the end it was Lang’s doctoral student Kersey who
obtained some of the definitive results of the theory, for example the determination
of a group of roots of elliptic units in the Hilbert class field H of K such that the
index of this group in the group of all units of H is precisely the class number of
H. Kersey was in effect a third author of the part of Modular Units having to do
with class number formulas.

In recent years the theory of elliptic units has to some extent been subsumed
in and overshadowed by broader developments in Iwasawa theory, notably Rubin’s
proof [25] of the one-variable and two-variable main conjectures in the Iwasawa
theory of imaginary quadratic fields. But the need for explicit formulas at finite
level never really ends. The very recent work of Á. Lozano-Robledo [17] and A. L.
Folsom [12] attests to the ongoing vitality of the problems considered more than a
quarter of a century ago by Robert and Kubert-Lang.
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2. Frobenius distributions The circle of ideas known as the “Lang-Trotter
conjectures” comprises two distinct themes, which are developed respectively in the
book Frobenius distributions in GL2-extensions (reproduced in its entirety as article
[1976d] of the Collected Papers) and the paper “Primitive points on elliptic curves”
[1977b]. What these two works have in common, besides their joint authorship
with Trotter, is that both are concerned with Frobenius distributions arising from
elliptic curves. Here the term “Frobenius distribution” is used broadly to include
any function p 7→ a(p) from prime numbers to integers which arises naturally in
algebraic number theory or diophantine geometry. Henceforth E denotes an elliptic
curve over Q and ∆ its minimal discriminant.

2.1. Frobenius distributions in GL2-extensions. In this subsection we assume
that E does not have complex multiplication. For p 6 |∆ put

a(p) = 1 + p− |Ẽ(Fp)|,
where Ẽ is the reduction of E modulo p. Given an integer t and an imaginary
quadratic field K, Lang and Trotter consider the counting functions Nt(x) and
NK(x) corresponding to what they call the “fixed trace” and “imaginary quadratic”
distributions of the map p 7→ a(p). By definition, Nt(x) is the number of primes
p ≤ x (p 6 |∆) such that a(p) = t, and NK(x) is the number of primes p ≤ x (p 6 |∆)
such that the polynomial X2 − a(p)X + p factors into linear factors in K. Of
course this polynomial is just the characteristic polynomial of a Frobenius element
σp ∈ Gal(Q̄/Q) acting on the `-adic Tate modules of E (` 6= p), and the “trace” in
“fixed trace distribution” is an allusion to this interpretation of a(p). In fact Lang
and Trotter define Nt(x) and NK(x) for any strictly compatible family of `-adic
representations ρ` : Gal(Q̄/Q) → GL(2,Z`) such that the image of the product
representation into GL(2, Ẑ) is an open subgroup of GL(2, Ẑ) and such that the
characteristic polynomial of ρ`(σp) has the form X2 − a(p)X + p with a(p) ∈ Z
and |a(p)| ≤ 2

√
p. The authors ask by the way whether any such families exist

besides the ones coming from elliptic curves, and to my knowledge their question
has not been explicitly addressed in the literature. In any case, given this framework
Lang and Trotter define certain constants ct ≥ 0 and cK > 0 (depending on the
compatible family {ρ`} as well as on t and K) and conjecture that

Nt(x) ∼ ct

√
x/ log x

and
NK(x) ∼ cK

√
x/ log x

for x → ∞. Here we are following the convention of Lang-Trotter that if ct = 0
then the relation Nt(x) ∼ ct

√
x/ log x means that Nt(x) is constant for large x (in

other words the underlying set of primes is finite).
Let us refer to this conjecture as the first Lang-Trotter conjecture; the conjecture

on primitive points discussed below is then the second Lang-Trotter conjecture. An
important aspect of the first conjecture is the precise definition of the constants
ct and cK , which is based on a probabilistic model. This feature distinguishes
the conjecture from, say, Tuskina’s earlier attempt [30] to study the asymptotics of
supersingular primes (the case t = 0) without a probabilistic model and without any
prediction about the value of c0. A similar comment pertains to V. K. Murty’s paper
[21], which is in other respects a vast generalization of the Lang-Trotter conjecture.
On the other hand, in their study of the asymptotics of supersingular primes for
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modular abelian varieties, Bayer and González [2] do consider a probabilistic model
generalizing that of Lang and Trotter.

What is immediately striking about the first Lang-Trotter conjecture is its ap-
parent utter inaccessibility. As Lang once remarked, the conjecture is contained
“in the error term of the Riemann hypothesis.” Nonetheless, there are a few re-
sults (referring for the most part to an elliptic curve E rather than to an abstract
compatible family {ρ`} satisfying the Lang-Trotter axioms) which have some bear-
ing on the conjecture. To begin with, the theorem of Elkies [10] that an elliptic
curve over Q has infinitely many supersingular primes is at least consistent with
the conjecture, because Lang and Trotter show that c0 > 0 in this case. Also con-
sistent are a number of “little oh” results about Nt(x) and NK(x), starting with
Serre’s observation that these functions are o(x/ log x) (i.e. the underlying sets of
primes have density 0) and even o(x/(log x)γ) with γ > 1 (see [26], [27]). Further
improvements in the bound for Nt(x) were made by Wan [31] and V. K. Murty
[20], and in the case of supersingular primes the bound N0(x) = O(x3/4) was ob-
tained by Elkies, Kaneko, and M. R. Murty [11]. There are also results giving
the conjectured growth rate “on average” for N0(x) (Fouvry-Murty [13]) and more
generally for Nt(x) (David-Pappalardi [8]), the average being taken over a natural
two-parameter family of elliptic curves. As for NK(x), the best upper bound to
date is in the recent paper of Cocojaru, Fouvry, and M. R. Murty [4], who also give
estimates under the generalized Riemann hypothesis. Finally, and in an altogether
different direction, analogous problems for Drinfeld modules has been investigated
by Brown [3] and David [6], [7].

2.2. Primitive points on elliptic curves. The first Lang-Trotter conjecture can
be viewed as an analogue of the Chebotarev density theorem in which finite Galois
extensions of Q are replaced by the infinite Galois extensions generated by division
points on elliptic curves. The second Lang-Trotter conjecture also has a classical
antecedent, but it is Artin’s primitive root conjecture, which predicts the density
of the set of primes p such that a given integer nonzero integer a is a primitive
root modulo p. In particular, if a 6= −1 and a is not a square then this density is
conjectured to be positive. The analogue proposed by Lang and Trotter involves an
elliptic curve E over Q of positive rank and a given point P ∈ E(Q) of infinite order.
There is no longer any need to assume that E is without complex multiplication.
Consider the set of primes p 6 |∆ such that Ẽ(Fp) is generated by the reduction of P
modulo p (and is therefore in particular cyclic). Lang and Trotter conjecture that
this set has a density, and they explain how to compute the conjectured density
using reasoning analogous to Artin’s. More generally, Lang and Trotter consider
an arbitrary free abelian subgroup Γ of E(Q). If we let NΓ(x) denote the number
of primes p ≤ x (p 6 |∆) such that Ẽ(Fp) coincides with the reduction of Γ modulo
p, then the general form of the conjecture is that

NΓ(x) ∼ cΓx/ log x

for some constant cΓ.
Just as Hooley [16] was able to prove Artin’s primitive root conjecture by as-

suming the generalized Riemann hypothesis, R. Gupta and M. R. Murty [14] were
able to prove a conditional result in the Lang-Trotter setting: Under the gener-
alized Riemann hypothesis we have NΓ(x) ∼ cΓx/ log x whenever the rank of Γ
is ≥ 18. In fact in the case of elliptic curves with complex multiplication Gupta
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and Murty obtain an asymptotic relation of this sort even when the rank of Γ is
one, but for a slightly different counting function, say N ′

Γ(x), which differs from
NΓ(x) in that we count only primes which split in the field of complex multiplica-
tion. Unconditionally, Gupta and Murty prove that if the rank of Γ is ≥ 6 then
N ′

Γ(x) À x/(log x)2.
An analogue of the second Lang-Trotter conjecture can also be formulated for an

elliptic curve over a global field of positive characteristic, and in very recent work
Hall and Voloch [15] have proved the analogue whenever the rank of Γ is ≥ 6.
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Serge Lang’s work in Diophantine Geometry
Paul Vojta

I first knew of Serge Lang through his books—Algebra, Algebraic Number Theory,
and Elliptic Functions. Later, as I was finishing my degree and getting ready to join
him at Yale, he was finishing his book Fundamentals of Diophantine Geometry, a
substantial rewrite of his earlier Diophantine Geometry. In Serge’s worldview, the
way you choose to look at a theorem is often more important than the theorem itself.
As the title suggests, Serge’s outlook on number theory was decidedly geometric.
While others at the time shared this viewpoint (e.g., Weil, Tate, Serre), it is easy to
forget that others did not, as Mordell’s review of the earlier Diophantine Geometry
attests.

A few years later Serge wrote Introduction to Arakelov Theory ; together with
Cornell-Silverman and Soulé-Abramovich-Burnol-Kramer, they form the short list
of key introductory books in this area.

Beyond books, Serge’s influence on number theory derives more from his con-
jectures than his theorems, although he had quite a few of those, too. His earliest
major conjecture in this area was that a projective variety over a number field
embedded in C is Mordellic (i.e., had only finitely many points rational over any
given number field containing the field of definition of the variety) if and only if
the corresponding complex projective variety is Kobayashi hyperbolic. Recall that
the Kobayashi semidistance on a complex space X is the largest semidistance sat-
isfying the property that all holomorphic maps D to X are distance nonincreasing,
where D is the unit disk in C with the Poincaré metric. A complex space is then
Kobayashi hyperbolic if its Kobayashi semidistance is actually a distance. For ex-
ample, a compact Riemann surface of genus g is Kobayashi hyperbolic if and only
if g ≥ 2, exactly the condition of Mordell’s conjecture.

Later Serge extended this conjecture to include subfields of C finitely generated
over Q.

In 1978 Brody showed that a compact complex space X is Kobayashi hyperbolic
if and only if there are no nonconstant holomorphic maps from C to X, thus simpli-
fying the above conjecture to the assertion that X is Mordellic if and only if there
are no nonconstant holomorphic maps C → X. In general, this conjecture is still
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open, although it has been proved for curves and more generally for closed subva-
rieties of abelian varieties. It is also closely related to conjectures and theorems in
Nevanlinna theory.

The above special case came as a consequence of a proof of another of Lang’s
conjectures. Let A be a semiabelian variety over C, let X be a closed subvariety of
A, and let Γ be a subgroup of A(C) such that dimQ Γ⊗ZQ is finite. Then Γ∩X(C)
is contained in a finite union of translated semiabelian subvarieties of A contained
in X. This was proved by Faltings, Vojta, and McQuillan (who stated it over the
algebraic closure Qa of Q, but the general case follows by the function field variant
of the same theorem). This gives finiteness statements for X(k) in the abelian case
by letting Γ = A(k), and correctly anticipated the fact that working with rational
points (or integral points, in the semiabelian case) really boils down to finite rank
of Γ. The conjecture was also proved for function fields of characteristic p > 0 by
Hrushovsky (suitably restated). Returning to the case over Qa, this conjecture of
Lang has been combined with Bogomolov’s conjecture on points in X(Qa) of small
height to give an elegant result conjectured by Poonen and proved by Rémond.

Another conjecture of Lang that has received a lot of attention is his conjec-
ture (originally posed as a question by Bombieri) that if X is a pseudo canonical
projective variety defined over a subfield of C finitely generated over Q, then X is
pseudo Mordellic. Here a variety is pseudo canonical if it is of general type. This
follows Griffiths’ definition that a variety is canonical if its canonical bundle is am-
ple; in Lang’s terminology, pseudo means outside of a proper Zariski-closed subset,
so pseudo ample means big and therefore pseudo canonical means general type.4

Likewise pseudo Mordellic means that the rational points, over any given subfield
of C finitely generated over Q and containing the field of definition of the variety,
are not Zariski dense. This is sometimes called the “weak Lang conjecture”; the
strong version asserts that there is a proper Zariski-closed subset Z of X such that
X(k) \ Z(k) is finite for all fields k as above.

A number of consequences of these conjectures have been proved over the years.
For example, Caporaso, Harris, and Mazur showed that if the weak Lang conjecture
holds, then for all integers g ≥ 2 and for all number fields k there is a bound
B(g, k) ∈ Z such that #C(k) ≤ B(g, k) for all curves C of genus g over k. If the
strong Lang conjecture is true, they showed in addition that for all g ≥ 2 there is a
bound N(g) ∈ Z such that for all k there are only finitely many smooth projective
curves of genus g over k (up to isomorphism) with #C(k) > N(g).

It should be noted that some people (e.g., Bogomolov) believe this conjecture to
be false.

Serge never let controversy stop him, though, and he has formulated additional
conjectures regarding the proper Zariski-closed subset in the strong form of his
conjecture. Let X be a projective variety over a field k ⊆ C. We define the
algebraic special set to be the Zariski closure of the union of the images of all non-
constant rational maps of group varieties over ka into X×k ka. He then conjectured
that X is pseudo canonical if and only if its special set is not all of X. He further
conjectured that if X is pseudo canonical, then the proper Zariski-closed subset
in his strong conjecture can be taken to be the special set, and also (assuming
k = C) that all nonconstant holomorphic maps C → X lie in the special set

4As Serge would say, “The notation is functorial with respect to the ideas.”
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(pseudo Brody hyperbolic). This last conjecture thus generalizes his conjecture on
Kobayashi hyperbolicity.

A recurring theme in these conjectures is that one has algebraic criteria for
analytic conditions of hyperbolicity.

In recent years Serge set aside these conjectures in favor of working on the heat
kernel, but he returned to an aspect of them during his last few years. Recall that
Roth’s theorem (in its simplest form) states that if α is an algebraic number and ε >
0 then there are only finitely many p/q ∈ Q (with p and q relatively prime integers
and q > 0) such that − log |α− p/q| > (2 + ε) log q. In the 1960s, Lang conjectured
that this could be improved to 2 log q + c log log q for some constant c, possibly
1 + ε, and subsequent computations with Trotter backed this up. Furthermore,
based on a theorem of Khinchin he conjectured that the error term ε log q in Roth
could be improved to log ψ(q) for any given increasing function ψ for which the sum∑

(q log ψ(q))−1 converges. His philosophy was that Khinchin’s theorem applied to
almost all real numbers, in a measure theoretic sense, and that algebraic numbers
should behave likewise.

When the conjecture with Nevanlinna theory came on the scene, he posed the
corresponding question in that context. It was proved by P.-M. Wong and himself,
and subsequent refinements have been obtained by Hinkkanen, Ye, and others. The
original question on diophantine approximation still remains open, though.

In the last two years, Lang and van Frankenhuijsen started work on the question
of what the best error term should be for the abc conjecture. For some time it
has been well known that a Khinchin-type error term is too strong. Instead, they
suggest O

(√
h/ log h

)
, where h is the logarithmic height of the point [a : b : c].

Sadly, van Frankenhuijsen will have to continue work on this on his own.

University of California, Berkeley
vojta@math.berkeley.edu

Diophantine geometry as Galois theory in the mathematics of Serge Lang
Minhyong Kim

Lang’s conception of Diophantine geometry is rather compactly represented by
the following celebrated conjecture [4]:

Let V be a subvariety of a semi-abelian variety A, G ⊂ A a finitely
generated subgroup, and Div(G) the subgroup of A consisting of
the division points of G. Then V ∩Div(G) is contained in a finite
union of subvarieties of V of the form Bi + xi, where each Bi is a
semi-abelian subvariety of A and xi ∈ A.

There is a wealth of literature at this point surveying the various ideas and tech-
niques employed in its resolution, making it unnecessary to review them here in any
detail [10, 39]. However, it is still worth taking note of the valuable generality of the
formulation, evidently arising from a profound instinct for the plausible structures
of mathematics. To this end, we remark merely that it was exactly this generality
that made possible the astounding interaction with geometric model theory in the
90’s [3]. That is to say, analogies to model-theoretic conjectures and structure theo-
rems would have been far harder to detect if attention were restricted, for example,
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to situations where the intersection is expected to be finite. Nevertheless, in view
of the sparse subset of the complex net of ideas surrounding this conjecture that
we wish to highlight in the present article, our intention is to focus exactly on the
case where A is compact and V does not contain any translate of a connected non-
trivial subgroup. The motivating example, of course, is a compact hyperbolic curve
embedded in its Jacobian. Compare then the two simple cases of the conjecture
that are amalgamated into the general formulation:

(1) V ∩ A[∞], the intersection between V and the torsion points
of A, is finite.
(2) V ∩G is finite.

Lang expected conjecture (1) to be resolved using Galois theory alone. This insight
was based upon work of Ihara, Serre, and Tate ([28], VIII.6), dealing with the
analogous problem for a torus, and comes down to the conjecture, still unresolved,
that the image of the Galois representation in Aut(A[∞]) ' GL2g(Ẑ) contains an
open subgroup of the homotheties Ẑ∗. Even while assertion (1) is already a theorem
of Raynaud [44], significant progress along the lines originally envisioned by Lang
was made in [2] by replacing A[∞] with A[p∞], the points of p-power torsion, and
making crucial use of p-adic Hodge theory.

It is perhaps useful to reflect briefly on the overall context of Galois-theoretic
methods in Diophantine geometry, of course without attempting to do justice to the
full range of interactions and implications. Initially, that Galois theory is relevant
to the study of Diophantine problems should surprise no one. After all, if we
are interested in X(F ), the set of rational points of a variety X over a number
field F , what is more natural than to observe that X(F ) is merely the fixed point
set of Γ := Gal(F̄ /F ) acting on X(F̄ )? Since the latter is an object of classical
geometry, such an expression might be expected to nicely circumscribe the subset
X(F ) of interest. This view is of course very naive and the action on Γ on X(F̄ )
is notoriously difficult to use in any direct fashion. The action on torsion points of
commutative group varieties on the other hand, while still difficult, is considerably
more tractable, partly because a finite abelian subgroup behaves relatively well
under specialization. Such an arithmetic variation exerts tight control on the fields
generated by the torsion points, shaping Galois theory into a powerful tool for
investigations surrounding (1).

On the other hand, for conjecture (2), where the points to be studied are not
torsion, it is not at all clear that Galois theory can be as useful. In fact, my
impression is that Lang expected analytic geometry of some sort to be the main
input to conjectures of type (2). This is indicated, for example, by the absence of
any reference to arithmetic in the formulation. We might even say that implicit in
the conjecture is an important idea that we will refer to as the analytic strategy:

(a) replace the difficult Diophantine set V (F ) by the geometric
intersection V ∩G;
(b) try to prove this intersection finite by analytic means.

In this form, the strategy appears to have been extraordinarily efficient over function
fields, as in the work of Buium [4]. Even Hrushovski’s [15] proof can interpreted in
a similar light where passage to the completion of suitable theories is analogous to
the move from algebra to analysis (since the theory of fields is not good enough).
These examples should already suffice to convince us that it is best left open as to
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what kind of analytic means are most appropriate in a given situation. The proof
over number fields by Faltings [9], as well as the curve case by Vojta [47], utilizes
rather heavy Archimedean analytic geometry. Naturally, the work of Vojta and
Faltings draws us away from the realm of traditional Galois theory. However, in
Chabauty’s theorem [5], where V is a curve and the rank of G is strictly less than
the dimension of A, it is elementary non-Archimedean analysis, more specifically
p-adic abelian integrals, that completes the proof. Lang makes clear in several
different places ([28], [28], notes to chapter 8, [36], I.6) that Chabauty’s theorem
was a definite factor in the formulation of his conjecture. This then invites a return
to our main theme, as we remind ourselves that non-Archimedean analysis has come
to be viewed profitably over the last several decades as a projection of analysis on
Galois groups, a perspective of which Lang was well aware ([33], chapter 4). As
such, it has something quite substantial to say about non-torsion points, at least
on elliptic curves ([18], for example). Hodge theory is again a key ingredient, this
time as the medium in which to realize such a projection [43].

It is by now known even to the general public that a careful study of Galois
actions underlies the theorem of Wiles [49], and roughly one-half of the difficulties
in the theorem of Faltings [8]. There, Galois representations must be studied in
conjunction with an array of intricate auxiliary constructions. However, the most
basic step in the Galois-theoretic description of non-torsion points, remarkable in
its simplicity, goes through the Kummer exact sequence

0→A[m](F )→A(F )→A(F ) δ→ H1(Γ, A[m])→H1(Γ, A)→.

In this case, an easy study of specialization allows us to locate the image of δ inside
a subgroup H1(ΓS , A[m]) of cohomology classes with restricted ramification, which
then form a finite group. We deduce thereby the finiteness of A(F )/mA(F ), the
weak Mordell-Weil theorem. Apparently, a streamlined presentation of this proof,
systematically emphasizing the role of Galois cohomology, first appears in Lang’s
paper with Tate [38]. There, they also emphasize the interpretation of Galois
cohomology groups as classifying spaces for torsors, in this case, for A and A[m].
(We recall that a torsor for a group U in some category is an object corresponding
to a set with simply transitive U -action, where the extra structure of the category,
such as Galois actions, prevent them from being trivial. See, for example, [40],
III.4.) This construction has been generalized in one direction to study non-torsion
algebraic cycles by associating to them extensions of motives [7]. More pertinent to
the present discussion, however, is a version of the Kummer map that avoids any
attempt to abelianize, taking values, in fact, in non-abelian cohomology classes.

In the course of preparing this article, I looked into Lang’s magnum opus [28]
for the first time in many years and was a bit surprised to find a section entitled
‘non-abelian Kummer theory.’ What is non-abelian there is the Galois group that
needs to be considered if one does not assume a priori that the torsion points of
the group variety are rational over the ground field. The field of m-division points
of the rational points will then have a Galois group H of the form

0→A[m]→H→M→0

where M ⊂ GL2g(Z/m). Thus, ‘non-abelian’ in this context is used in the same
sense as in the reference to non-abelian Iwasawa theory. But what is necessary
for hyperbolic curves is yet another layer of non-commutativity, this time in the
coefficients of the action. Given a variety X with a rational point b, we can certainly
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consider the étale fundamental group π̂1(X̄, b) classifying finite étale covers of X̄.
But the same category associates to any other point x ∈ X(F ) the set of étale paths

π̂1(X̄; b, x)

from b to x which is naturally a torsor for π̂1(X̄, b). All these live inside the cate-
gory of pro-finite sets with Galois action. There is then a non-abelian continuous
cohomology set H1(Γ, π̂1(X̄, b)) that classifies torsors, and a non-abelian Kummer
map

δna : X(F )→H1(Γ, π̂1(X̄, b))
sending a point x to the class of the torsor π̂1(X̄; b, x). This is obviously a ba-
sic construction whose importance, however, has begun to emerge only in the last
twenty or so years. It relies very much on the flexible use of varying base-points in
Grothendieck’s theory of the fundamental group, and it appears to have taken some
time after the inception of the arithmetic π1 theory [45] for the importance of such
a variation to be properly appreciated [12, 6, 16]. In fact, the impetus for taking it
seriously came also for the most part from Hodge theory [13, 14]. As far as Diophan-
tine problems are concerned, in a letter to Faltings [12] written shortly after the
proof of the Mordell conjecture, Grothendieck proposed the remarkable conjecture
that δna should be a bijection for compact hyperbolic curves. He expected such a
statement to be directly relevant to the Mordell problem and probably its variants
like conjecture (2). This expectation appears still to be rather reasonable. For one
thing, it is evident that the conjecture is a hyperbolic analogue of the finiteness con-
jecture for Tate-Shafarevich groups. And then, profound progress is represented by
the work of Nakamura, Tamagawa, and Mochizuki [42, 46, 41], where a statement
of this sort is proved when points in the number field are replaced by dominant
maps from other varieties. Some marginal insight might also be gleaned from [22]
and [23] where a unipotent analogue of the Kummer map is related to Diophantine
finiteness theorems. There, the ambient space inside which the analysis takes place
is a classifying variety H1

f (Γv, Uet
n ) of torsors for the local unipotent étale funda-

mental group (rather than the Jacobian), while the finitely-generated group G is
replaced by the image of a map

H1
f (ΓS , Uet

n )→H1
f (Γv, Uet

n )

coming from a space of global torsors. Thereby, one obtains a new manifestation
of the analytic strategy proving X ∩ Im[H1

f (ΓS , Uet
n )] to be finite in some very

special circumstances, and in general for a hyperbolic curve over Q if one admits
standard conjectures from the theory of mixed motives (for example, the Fontaine-
Mazur conjecture on geometric Galois representations). Fortunately, Chabauty’s
original method fits naturally into this setting as the technical foundation of the
analytic part now becomes non-abelian p-adic Hodge theory and iterated integrals.
Incidentally, some sense of the Diophantine content of these ideas can already be
gained by deriving the injectivity of δna from the Mordell-Weil theorem.

It should be clear at this point that the Galois theory of the title refers in general
to the theory of the fundamental group. Serge Lang was profoundly concerned with
the fundamental group for a good part of his mathematical life. A rather haphazard
list of evidence might be comprised of:

-his foundational work on unramified class field theory for varieties over finite
fields, where he proves the surjectivity of the reciprocity map among many other
things [25, 26];
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-his study of the ubiquitous ‘Lang torsor’ [27];
-his work with Serre on fundamental groups of proper varieties in arbitrary char-

acteristic [37];
-his extensive study with Kubert of the modular function field [24];
-his work with Katz [21] on finiteness theorems for relative π1’s that made pos-

sible the subsequent proof by Bloch [1], and then Kato and Saito [19, 20] of the
finiteness of CH0 for arithmetic schemes.

Besides these influential papers, the reader is referred to his beautiful AMS
colloquium lectures [31] for a global perspective on the role of covering spaces in
arithmetic.

Even towards the end of his life when his published work went in an increas-
ingly analytic direction, he had a keen interest both in fundamental groups and in
the analogy between hyperbolic manifolds and number fields wherein fundamental
groups play a central role. In my last year of graduate school, he urged me strongly
to study the work of Kato and Saito (and apply it to Arakelov theory!) even though
it had been years since he had himself been involved with such questions. From
the Spring of 2004, I recall a characteristically animated exchange in the course of
which he explained to me a theorem of Geyer [11] stating that abelian subgroups
of Gal(Q̄/Q) are pro-cyclic. It was clear that he perceived this fact to fit nicely
into his vivid ideas about the heat kernel [17], but in a manner that I failed (and
still fail) to comprehend properly. (He was unfortunately secretive with his deeper
reflections on the arithmetic significance of his later work, allowing only informal
glimpses here and there. It is tempting but probably premature to speculate about
a Galois theory that encompasses even Archimedean analysis.) The preoccupation
with hyperbolic geometry that was evident even from the 70’s ([30, 34, 35] and
[36], chapters 8 and 9) could rather generally be construed as reflecting a persistent
intuition about the relevance of fundamental groups to Diophantine problems. (An
intuition that was shared by Grothendieck [12] and even Weil [48].)

As for the direct application of non-abelian fundamental groups to Diophantine
geometry that we have outlined here, one can convincingly place it into the general
framework of Lang’s inquiries. He is discussing the theorem of Siegel in the following
paragraph from the notes to chapter 8 of [28]:

The general version used here was presented in [28] following Siegel’s
(and Mahler’s) method. The Jacobian replaces the theta function,
as usual, and the mechanism of the covering already used by Siegel
appears here in its full formal clarity. It is striking to observe that
in [25], I used the Jacobian in a formally analogous way to deal
with the class field theory in function fields. In that case, Artin’s
reciprocity law was reduced to a formal computation in the isogeny
u 7→ u(q) − u of the Jacobian. In the present case, the heart of the
proof is reduced to a formal computation of heights in the isogeny
u 7→ mu + a.

We have emphasized above the importance of the Kummer map

x 7→ [π̂1(X̄; b, x)] ∈ H1(Γ, π̂1(X̄; b)).

When X is defined over a finite field Fq and we replace π̂1(X̄, b) by its abelian
quotient H1(X̄, Ẑ), the map takes values in

H1(Gal(F̄q/Fq), H1(X̄, Ẑ)) = H1(X̄, Ẑ)/[(Fr− 1)H1(X̄, Ẑ)],
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Fr ∈ Gal(F̄q/Fq) being the Frobenius element. But this last group is nothing but
the kernel

π̂ab
1 (X)0

of the structure map
π̂ab

1 (X)→π̂1(Spec(Fq)).
Thus the abelian quotient of the Kummer map becomes identified with the reci-
procity map [19]

CH0(X)0→π̂ab
1 (X)0

of unramified class field theory evaluated on the cycle (x) − (b). In other words,
the reciprocity map is merely an ‘abelianized’ Kummer map in this situation.
There is no choice but to interprete the reciprocity law [19, 20] as an ‘abelian-
ized Grothendieck conjecture’ over finite fields.

Of course it is hard to imagine exactly what Lang himself found striking in the
analogy when he wrote the lines quoted above. What is not hard to imagine is that
he would have been very much at home with the ideas surrounding Grothendieck’s
conjecture and the non-abelian Kummer map.
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1960–1961 (SGA 1). Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M.
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Serge Lang and the heat kernel
Jay Jorgenson

Beginning in the early 1990’s, Serge Lang viewed the heat kernel, and heat kernel
techniques, as a potentially unlimited source of mathematics which would touch
many fields of study. In [19], we presented an argument supporting the term “the
ubiquitous heat kernel” by citing numerous results where the heat kernel played a
prominent role. In Lang’s own writing, one can see the incorporation of the heat
kernel in several places, including: The Weierstrass approximation theorem and
Poisson summation formula in [26]; the explicit formulas for number theory in [25];
the Gamma function in [27]; and the background for the entire development in [28].
Lang’s fascination with the heat kernel was so thorough that, according to Peter
Jones, Serge began referring to himself as “an analyst” when asked to describe his
research interests.

From the early 1990’s until his death in 2005, Serge’s own research activities can
be described as addressing two points: Analytic aspects of regularized products
and harmonic series, and geometric constructions of zeta functions. Both endeavors
included heat kernels and heat kernel analysis, and the projects together focused
on the long-term goal of developing a theory of “ladders” of zeta functions. I had
the unique honor of working with Serge on these and other projects for nearly 15
years, and I will now describe a portion of the mathematics Serge and I had in
mind.

Regularized products and harmonic series. Children learn how to multiply
numbers, hopefully developing the ability to compute the product of a finite set of
numbers. The astute student will realize they actually can evaluate the product
of a countably infinite set of numbers provided that all but a finite number of
terms in the product are equal to one. In undergraduate analysis courses, students
study a slight perturbation of the elementary setting, namely when the terms in the
countably infinite sequence approach one sufficiently fast. The convergence result
established also demonstrates that when evaluating the infinite product, one can
simply multiply a sufficiently large number of terms in the sequence and obtain an
answer quite close to the theoretical result which exists for the infinite product.
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This connection with the elementary situation is intuitively consistent with that
which is learned in childhood.

In another direction, one can seek other mathematical means by which one can
determine the product of a finite sequence and then study the situations when the
definition extends. For example, let A = {ak} with k = 1, . . . , n be a finite sequence
of real, positive numbers, and let

(1) ζA(s) =
n∑

k=1

a−s
k ,

which we consider as a function of a complex variable s. Elementary calculus applies
to show that

(2)
n∏

k=1

ak = exp(−ζ ′A(0)).

In words, a special value of the zeta function (1) can be used to realize a product
of the elements of the finite set of numbers A.

To generalize (2), we seek to describe the countably infinite sets of numbers for
which (2) makes sense. Perhaps the first example to consider is A = Z>0, the set
of natural integers, so then ζA(s) is the Riemann zeta function. Classically, it is
known that the Riemann zeta function admits a meromorphic continuation to all
s ∈ C and is holomorphic at s = 0. Furthermore, it can be easily shown (using
the functional equation of the Riemann zeta function) that −ζ ′Z>0

(0) = log(
√

2π),
which leads to the remark “infinity factorial is equal to

√
2π”. Of course, such a

comment needs to be understood in the sense of (2) and meromorphic continuation.

More generally, we define a countably infinite sequence A = {ak} to have a zeta
regularized product, or regularized product, if the zeta function

ζA(s) =
∞∑

k=1

a−s
k

converges for s ∈ C with Re(s) sufficiently large, admits a meromorphic continua-
tion at s = 0 and is holomorphic at s = 0. With these conditions, the regularized
product of the elements of A is defined by the special value of the zeta function as
in (2). The question which naturally arises is to determine the conditions on the
sequence A for which a regularized product exists. For this, we re-write the zeta
function ζA as

(3) ζA(s) =
1

Γ(s)

∞∫

0

θA(t)ts
dt

t

where

(4) θA(t) =
∞∑

k=1

e−akt

and Γ(s) is the Gamma function. As further background, we refer to the articles [1]
and [29] which discuss some of the important roles played by the zeta regularized
products.
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The first part of my work with Lang appeared in [14] and [15]. The paper [14]
establishes general conditions for theta functions which will lead to regularized prod-
ucts, as well as to regularized harmonic series. As an example of the type of general
computations in [14], a connection is made relating zeta regularized products with
Weierstrass products from complex analysis which we call the Lerch formula, thus
a establishing a relation with the elementary notion of infinite products of numbers
which approach one sufficiently fast.

Further analysis in [15] and [17] leaned toward a type of formal analytic number
theory associated with regularized products. Functional equations of zeta func-
tions were shown to be equivalent to inversion formulas for the associated theta
functions, so then one is drawn to study theta functions rather than zeta functions
in this context. In the development of the explicit formulas, the Weil functional
comes from evaluating a complex integral involving the multiplicative factors in
the functional equations of zeta functions. If the multiplicative factors are assumed
to be expressed in terms of regularized products, then in [15] it is shown that the
Weil functional can be evaluated in terms of a Parseval-type formula, so again one
is seeking theta functions with certain properties, this time for the factors in the
functional equations.

Quite naturally, the question which arises is to characterize sequences from which
one can obtain regularized products. From (3), this question amounts to determin-
ing sequences whose associated theta function admits certain asymptotic behaviors
as t approaches zero and infinity. From Riemannian geometry, theta functions
naturally appear as the trace of heat kernels associated to certain differential and
pseuo-differential operators. The asymptotic conditions defined in [14] were estab-
lished with the heat kernel in mind.

From analytic number theory, where one does not know if an appropriate oper-
ator exists, an obvious sequence to study is given by the non-trivial zeros of a zeta
function. In [2], Cramér studied the theta function

(5) θQ(z) =
∑

ρ

eρz,

where the sum is over the zeros of the Riemann zeta function with positive imag-
inary part, which we denote by A+(Q), and with z ∈ C, again having positive
imaginary part. Cramér’s results in [2] consisted of two main parts: The theta
function (5) admits a branched meromorphic continuation to all z ∈ C and the
singularities of the continuation of (5) are at points of the form ±i log pn for a
positive integer n and a prime number p; and if we set z = it for t ∈ R>0, then
(5) satisfies the asymptotic conditions required of a theta function (4) in order to
form a regularized product from the sequence A+(Q). Cramér’s theorem forms
a key component in Deninger’s program [3] which has the goal of developing a
cohomological approach to analytic number theory (see also [29] and [31]).

In [16] and [18] Lang and I extended Cramér’s theorem to a wide range of zeta
function which satisfy very general conditions. In addition, in [20] we extended
Guinand’s results from [7], [8] and [9] which proved, among other theorems, several
functional relations for Cramér’s function. The point of view taken in [16], [18] and
[20] is to “load an induction”, as Lang would say, by placing various hypotheses on
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the factors in the functional equation; specifically, it was assumed that the factors
in the functional equations could be expressed as regularized products. With this
hypothesis, and other general assumptions such as the existence of an Euler product,
or Bessel sum, expansion, it was proved that the original zeta function could be
expressed as regularized products. As an example, since the Gamma function
can be expressed as a regularized product, which comes from the first example
mentioned above, we concluded that the Riemann zeta function is also expressible
as regularized products. A similar argument applies to virtually all zeta functions
from number theory.

Turning to geometry, one can define a (Selberg) zeta function associated to any
finite volume hyperbolic Riemann surface (see [10] and references therein for a
complete development of the Selberg zeta function in this context). In the case
when the surface is compact, the known functional equation and Euler product
expansions allow one to apply the results from [16] to conclude that the Selberg
zeta function can be expressed as regularized products, reproving a known result
from [4] and [30]. For non-compact yet finite volume surfaces, attempts were made
to express the Selberg zeta function as a regularized product, but the successful
results required the surface to be arithmetic. Using the results from [16], we were
able to conclude that the Selberg zeta function in general is a regularized product
through the induction we defined. The most interesting example, for us, was the
Selberg zeta function associated to the discrete group PSL(2,Z) since the functional
equation involves the Riemann zeta function, thus producing the following finite
“ladder” of functions: The Gamma function, the Riemann zeta function, and the
Selberg zeta function for PSL(2,Z). As stated, a direct calculation shows that the
Gamma function is a regularized product, and the induction hypothesis from [16]
implies that the Riemann zeta function, and then the Selberg zeta function for
PSL(2,Z), are expressible as regularized products.

Constructions from geometry. What is the next step in the “ladder” of
zeta functions? Lang and I believed that one can construct zeta functions using
heat kernel analysis on symmetric spaces, resulting in an infinite “ladder” of zeta
functions with functional equations involving zeta functions on the lower levels.
Consider a general setting involving a symmetric space X and discrete group Γ with
finite volume and non-compact quotient Γ\X. As described in [23], the procedure
we propose is the following: Start with a heat kernel on X, periodize with respect
to Γ, evaluate a regularized trace of the heat kernel, and then compute a certain
integral transform (the Gauss transform, which is the Laplace transform with a
quadratic change of variables) of the regularized trace of the heat kernel. The
resulting object is our proposed zeta function associated to Γ\X. In the work
we were undertaking, Lang and I were focusing our attention on the symmetric
spaces associated to SL(n,C), though one certainly could consider the the spaces
associated to SL(n,R). By taking Γ = SL(n,Z) and G = SL(n,R), we felt that
one could obtain an infinite “ladder” of zeta-type functions for each n ≥ 2, with
the case n = 2 yielding the Selberg zeta function. Furthermore, we believe that the
functional equation for the zeta function at level n will involve all zeta functions
from lower levels, as demonstrated by the case n = 2.
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In [21], [22] and [23], Lang and I initiated our program of study, which I plan to
continue. In particular, in [22], we defined Eisenstein series obtained by “twisting
with heat kernels rather than automorphic forms”, as Lang would say, and we
proposed what can be viewed as a repackaging of spectral decompositions in terms of
heat Eisenstein series. At this stage, we felt that one could already see new relations
involving zeta functions, namely that the constant term of Fourier expansions of
heat Eisenstein series should involve the Selberg zeta function of lower levels. One
implication of such a result would be an identity involving L-functions and zeta
functions, which would follow by comparing the Fourier coefficients in the heat
Eisenstein series with the sum of Fourier coefficients of Eisenstein series attached
to automorphic forms, which are known to be expressible in terms of L-functions
(see [6] and references therein).

Recent developments. Throughout our time together, Lang remained opti-
mistic that our proposed “ladder” of zeta functions would provide new ideas in
analytic number theory. Admittedly, many of our concepts have yet to be fully
tested; only future endeavors will determine if Lang’s belief in our program of
study was well-founded.

Beyond our own work, there have been many developments in mathematics which
Lang would have pointed to as providing further support for his faith in the heat
kernel. Certainly, the successful completion of the Poincaré conjecture is one in-
stance where heat kernel ideas have played a role. In [5], the author states the need
for a “second independent proof of the Moonshine conjectures” and states that the
heat kernel could provide one possibility. Lang would have been thrilled by this
statement. Serge was very taken by the article [24] where the authors consider spec-
tral theory and spectral expansions on the spaces nZ\Z, showing that even in the
case when n = 1 the results are non-trivial. In my own work with Kramer, we have
used the heat kernel associated to the hyperbolic metric to obtain new expressions
for the analytic invariants of the Arakelov theory of algebraic curves, see [11] and
[12]. In recent developments, we have shown that by taking the Rankin-Selberg in-
tegral of an identity from [11], one obtains theta-function type expressions involving
symmetric square L-function attached to non-holomorphic Maass forms, ultimately
obtaining an identity in terms of the symmetric square L-function attached to cer-
tain basis of holomorphic weight two forms; the full development of this identity is
presented in [13]. In some ways, the work in [13] relates to one of the first steps
envisioned by Lang and myself, namely the uncovering of new relations, possibly
regularized in some sense, involving known and new zeta functions.

Soon after Lang and I completed the article [19], we discussed at length the
ideas and hopes we had for the results one could obtain from “ladders”. At one
point he said to me “I wish I were 30 years old again so I could concentrate on the
heat kernel”. Given the way Serge devoted his life to mathematics, let us take that
statement as summarizing his sincere and profound feeling in the strength of the
heat kernel and heat kernel analysis.
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