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0 Introduction

The Hartogs extension phenomenon was discovered by Fritz Hartogs in 1906.
Along with Poincaré’s result about the biholomorphic inequivalence of the
ball and the bidisc, this theorem helped to establish the independent essence
of the function theory of several complex variables. This was not a trite
extension of the one-variable theory. It is in fact an entirely new enterprise.

At about the same time that Hartogs presented his original proof on the
polydisc, Poincaré developed an alternative proof on the ball—using spherical
harmonics! We shall present a spherical harmonics proof, but not Poincaré’s,
below.

The original approach to the Hartogs extension phenomenon begged im-
portant topological questions. One wants to develop a version of this result
on virtually any domain (at least one with the right topology). But there are
nasty analytic continuation questions that were a roadblock for about 100
years. No less an eminence than William Fogg Osgood [OSG] published a
classical proof that addressed these questions, but his proof is considered to
have been flawed. It is only recently that Merker and Porten in [MEP] have
been able to rigorously carry out Osgood’s program and produce a classical
topological proof. We shall discuss these issues in what follows.

1Email: skrantz@aimath.org.
2The author would like to thank the American Institute of Mathematics for its hospi-

tality and support during this work.
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1 Preliminaries

We say that a function f(z1, z2, . . . , zn) of several complex variables is holo-
morphic if it is holomorphic in each variable separately: freeze all variables
but one, and the function is holomorphic in the remaining variable. It can be
shown (see [KRA1]) that such a function has a local power series expansion
about each point of its domain. It also satisfies a suitable version of the
Cauchy-Riemann equations.

If P = (p1, p2, . . . , pn) ∈ Cn and r > 0 then we define the ball

B(P, r) = {(z1, z2) : |z1 − p1|
2 + |z2 − p2|

2 + · · · + |zn − pn|
2 < r2}

and the polydisc

Dn(P, r) = {(z1, . . . , zn) : |zj − pj | < r for j = 1, . . . , n} .

It is also useful to consider the closed ball and closed polydisc

B(P, r) = {(z1, z2) : |z1 − p1|
2 + |z2 − p2|

2 + · · · + |zn − pn|
2 ≤ r2} .

and
D
n
(P, r) = {(z1, . . . , zn) : |zj − pj | ≤ r for j = 1, . . . , n} .

Recall in one complex variable that

∂

∂z
=

1

2

[
∂

∂x
− i

∂

∂y

]
and

∂

∂z
=

1

2

[
∂

∂x
+ i

∂

∂y

]
.

This is just a new basis for the tangent space to the complex plane. We note
particularly that

∂

∂z
z = 1

∂

∂z
z = 0

∂

∂z
z = 0

∂

∂z
z = 1 .

In several complex variables we write

∂

∂zj
=

1

2

[
∂

∂xj
− i

∂

∂yj

]
and

∂

∂zj
=

1

2

[
∂

∂xj
+ i

∂

∂yj

]

for j = 1, . . . , n. It is useful to define the differential operator on functions
given by

∂u =
∑

j

∂u

∂zj
dzj . (1.1)
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The expression on the righthand side of equation (1.1) is called a 1-form. If

ψ(z) =
n∑

j=1

ψjdzj

is any 1-form (of what we call type (0, 1)), then we set

∂ψ =
∑

j

∂ψj
∂zk

dzk ∧ dzj .

It is easy to check that ∂(∂u) = ∂
2
u = 0 for any C2 function u.

A domain Ω in C or Cn is said to be a domain of holomorphy if there is
a holomorphic function g on Ω that cannot be analytically continued to any
larger domain. [The full technical definition of “domain of holomorphy” is a
bit more complicated, and we refer the reader to [KRA1] for the details.] It
turns out that every domain in C is a domain of holomorphy. For fix such
an Ω ⊆ C. Let Z = {zj} be a collection of points in Ω that has no interior
accumulation point but that accumulates at every boundary point of Ω. For
instance, we may for each k = 1, 2, . . . let Sk = {z ∈ Ω : dist(z, ∂Ω) = 2−k}.
Now select a maximal collection Pk ⊆ Sk of finitely many points that are
about distance 2−k apart. Set Z = ∪kPk. Details of this construction may
be found in [GRK]. Now, by Weierstrass’s theorem, there is a holomorphic
g on Ω that vanishes precisely at the points of Z and nowhere else. This g
cannot be analytically continued to any larger open set, else its zeros would
have an interior accumulation point and the function would be identically
zero.

As we shall see below, one of the main points of the Hartogs theorem is
that not every domain in C2 is a domain of holomorphy.

2 Statement of the Theorem and Consequences

The most classical rendition of the Hartogs extension phenomenon is as fol-
lows:

Theorem 1: Let
Ω = D2(0, 2) \D

2
(0, 1) .

Figure 1 indicates what Ω looks like. Suppose that f is a holomorphic func-
tion on Ω. We do not make any boundedness hypotheses about f . Then there
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Figure 1: The Hartogs Extension Phenomenon.

is a holomorphic function F on D2(0, 2) such that F |Ω = f .

One cannot help but think of the Riemann removable singularities theo-
rem from one complex variable: If f is holomorphic on D(0, r) \ {0} and is
bounded, then f continues analytically to D(0, 1). The theorem above seems
to be quite a lot stronger, since it hypothesizes f to be holomorphic on a do-
main with a big hole in the center (not just a point removed), it hypothesizes
nothing about boundedness, and yet it derives the same conclusion.

At the risk of belaboring the obvious, one might try to construct a holo-
morphic function on Ω in the theorem that will not continue analytically.
What about f1(z1, z2) = 1/z1 or f2(z1, z2) = 1/z2? The trouble with each of
these functions is that its singularity is not just at the origin. We see that
f1 is singular on the entire complex line {z1 = 0} and f2 is singular on the
entire complex line {z2 = 0}. In particular, neither function is holomorphic
on Ω, so the theorem does not apply to them.

And in fact the theorem has a profound consequence that answers the
question raised in the last paragraph:

Theorem 2: A holomorphic function of several complex variables cannot
have an isolated singularity.
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A companion result is

Theorem 3: A holomorphic function of several complex variables cannot
have an isolated zero.

Let us now prove these theorems. For Theorem 2, suppose that f is
holomorphic on a small deleted ball B(P, r)\{P}, and that f has a singularity
at P . We may find positive numbers 0 < r1 < r2 < r such that

D2(P, r2) \D
2
(P, r1) ⊆ B(P, r) \ {P} .

But then Theorem 1 applies (after a suitable translation and scaling of co-

ordinates) on the domain Ω′ ≡ D2(P, r2) \ D
2
(P, r1), so that f continuous

analytically across P . That is a contradiction.
Now let us look at Theorem 3. If f is holomorphic on some small ball

centered at P and has an isolated zero at P , then 1/f has an isolated singu-
larity at P . According to Theorem 2, that is impossible. And that ends the
proof.

What we see—and this can be fleshed out by using some commutative
algebra (see [KRA1, Ch. 6])—is that the zero set of a holomorphic function
of n variables is in fact an (n − 1)-dimensional variety, with some possibly
singular subvarieties.

3 First Proof of the Hartogs Theorem

Let f be holomorpfic on Ω. For z1 fixed, |z1| < 2, we write

fz1(z2) = f(z1, z2) =
∞∑

j=−∞

aj(z1)z
j
2, (3.1)

where the coefficients of this Laurent expansion are given by

aj(z1) =
1

2πi

∮

|z2|=3/2

f(z1, ζ)

ζj+1
dζ.

In particular, aj(z1) depends holomorpfically on z1 (by Morera’s theorem,
for instance). But aj(z1) = 0 for j < 0 and 1 < |z1| < 2. Therefore, by
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analytic continuation, aj(z1) ≡ 0 for j < 0. But then the series expansion
(3.1) becomes

∞∑

j=0

aj(z1)z
j
2

and this series defines a holomorphic function F on all of D2(0, 2) that agrees
with the original function f on Ω. Thus Ω is not a domain of holomorphy—
all holomorphic functions on Ω continue to the larger domain D2(0, 2). This
completes the proof of the “Hartogs extension phenomenon.”

4 More General Versions of the Hartogs The-

orem

As previously indicated, one would like to replace the “polydisc with a smaller
polydisc removed” by a more general domain. One possible formulation of
the result is this:

Theorem: Let Ω ⊆ C
n be a domain and let U be a neighborhood

of the boundary of Ω. Suppose that f is holomorphic on U ∩ Ω.
Then f analytically continues to all of Ω.

Unfortunately, as formulated here, this result is false. For if the boundary
of Ω is disconnected, and if f is identically 1 on one piece of the boundary
and identically 0 on the other piece of the boundary, then we would have a
built-in contradiction.

So we certainly need to assume that the boundary of Ω is connected. But
the boundary of Ω can still be geometrically very complicated. Any attempt
at continuing f by sliding analytic discs—as in the original Hartogs proof—is
going to run into complications (as Osgood discovered in [OSG]). It required
a radical new methodology to address this issue, and we shall see what it is
in the next section.

5 The Partial Differential Equations Approach

We begin with an interesting generalization of the Cauchy integral formula.
Its proof is a straightforward application of Stokes’s theorem, and we refer
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the reader to [KRA1] or [KRA2] for the details.

Proposition 4: If Ω ⊆ C is a bounded domain with C1 boundary and if
f ∈ C1(Ω) then, for any z ∈ Ω,

f(z) =
1

2πi

∫

∂Ω

f(ζ)

ζ − z
dζ −

1

2πi

∫

Ω

(
∂f(ζ)/∂ζ

)

ζ − z
dζ ∧ dζ.

Now we have

Theorem 5: Let ψ ∈ C1
c (C). The function defined by

u(ζ) = −
1

2πi

∫
ψ(ξ)

ξ − ζ
dξ ∧ dξ = −

1

π

∫
ψ(ξ)

ξ − ζ
dV (ξ)

satisfies

∂u(ζ) =
∂u

∂ζ
(ζ)dζ = ψ(ζ)dζ.

Proof: Let D(0, R) be a large disc that contains the support of ψ. Then

∂u

∂ζ
(ζ) = −

1

2πi

∂

∂ζ

∫

C

ψ(ξ)

ξ − ζ
dξ ∧ dξ

= −
1

2πi

∂

∂ζ

∫

C

ψ(ξ + ζ)

ξ
dξ ∧ dξ

= −
1

2πi

∫

C

∂ψ

∂ξ
(ξ + ζ)

ξ
δξ ∧ dξ

= −
1

2πi

∫

D(0,R)

∂ψ

∂ξ
(ξ)

ξ − ζ
δξ ∧ dξ.

By Proposition 4, this last equals

ψ(ζ) −
1

2πi

∫

∂D(0,R)

ψ(ξ)

ξ − ζ
dξ = ψ(ζ).

Here we have used the support condition on ψ. This is the result that we
wished to prove.
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Now we have a version of this result in the several complex variables set-
ting:

Theorem 6: Let ψ =
∑n
j=1 ψj(z)dzj be a (0, 1) form on Cn with C1

c

coefficients and that is ∂−closed. Then, for any choice of j, 1 ≤ j ≤ n, the
function

uj(z) = −
1

2πi

∫

C

ψj(z1, . . . , zj−1, ζ, zj+1, . . . , zn)

ζ − zj
dζ ∧ dζ

satisfies ∂uj = ψ. For any j and j′, 1 ≤ j, j′ ≤ n, it holds that uj = uj′.
If n > 1 then the functions uj are compactly supported; indeed, uj ≡ 0

on the connected component of c(suppψ) that contains ∞.

Proof: To verify the claim about compact support, suppose for simplicity
that j = 1. Set u = u1. Now ∂u/∂z` = ψ` = 0, all `, when z is large.
Thus u is holomorphic in each variable separately, hence holomorphic, for
z large—say when |z| > R. But, looking at the definition of u, we see that
u(z) itself must be zero when z is large. By analytic continuation, u(z) = 0
on the unbounded component of c(∪jsuppψj) In other words, u is compactly
supported. Given this, we note that the C1 function uj − uj′ is annihilated
by ∂; thus it is holomorphic in each variable separately hence, because of
its compact support, must be identically zero. It remains to prove the first
assertion.

We write

∂

∂z`
uj(z) = −

1

2πi

∂

∂z`

∫

C

ψj(z1, . . . , zj−1, ζ + zj, zj+1, . . . , zn)

ζ
dζ ∧ dζ

= −
1

2πi

∫

C

∂ψj

∂z`
(z1, . . . , zj−1, ζ + zj, zj+1, . . . , zn)

ζ
dζ ∧ dζ

= −
1

2πi

∫

C

∂ψ`

∂zj
(z1, . . . , zj−1, ζ + zj, zj+1, . . . , zn)

ζ
dζ ∧ dζ.

In this last equality we have exploited the compatibility condition ∂ψ = 0.
For fixed z, let D(0, R) be a large disc in C that contains the support of
ψ(z1, . . . , zj−1, ·, zj+1, . . . , zn). Then the last integral can be written as

−
1

2πi

∫

D(0,R)

∂ψ`

∂zj
(z1, . . . , zj−1, ζ, zj+1, . . . , zn)

ζ − zj
dζ ∧ dζ.
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Now the argument that we used to complete the proof of Theorem 5 shows
that this last expression equals ψ`(z). In other words,

∂uj = ψ,

as was required.

Next is our most general version of the Hartogs extension phenomenon.

Theorem 7: Let Ω ⊆ Cn be a bounded domain, n > 1. Let K be a compact
subset of Ω with the property that Ω \K is connected. If f is holomorphic
on Ω \K then there is a holomorphic F on Ω such that F |Ω\K = f.

Proof: Let φ be a function in C∞
c (Ω) that is identically 1 on a neighborhood

of K. Define

f̃(z) =

{
(1 − φ(z)) · f(z) if z ∈ Ω \K
0 if z ∈ K.

Then f̃ ∈ C∞(Ω). Finally, set

ψ(z) = ∂f̃(z).

Then ψ satisfies the following crucial properties:

1. ψ has C∞ coefficients;

2. ∂ψ = ∂
2
f̃ ≡ 0;

3. suppψ is a compact subset K0 of Ω.

The first two of these properties are obvious and the last follows since f̃ is
holomorphic in Ω ∩ (neighborhood of ∂Ω).

By Theorem 6, there is a function u ∈ C∞
c (Cn), with support compact

in Ω, so that ∂u = ψ. In particular the function u is identically 0 in a
neighborhood U of ∂Ω. We define F = f̃ − u. Then

∂F = ∂f̃ − ∂u = ψ − ψ = 0

so F is holomorphic on Ω. Also, shrinking U if necessary,

F |U = (f̃ − u)
∣∣∣
U

= f̃
∣∣∣
U

= f |U .
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Therefore F agrees with f near ∂Ω. Since Ω \K is connected, we may con-
clude by the uniqueness of analytic continuation that F = f on Ω \K. The
proof is complete.

The proof using partial differential equations, as presented here, is simple
and natural. And it sidesteps all the topological difficulties which seemed to
be present with a more elementary approach to the matter.

6 An Approach Using Spherical Harmonics

Now we use some ideas from the modern theory of harmonic analysis to give
quite a different take on the Hartogs phenomenon.

Recall that a spherical harmonic is the restriction to the unit sphere in
RN of a harmonic polynomial. It can be shown (see [KRA3] or [STW]) that
the spherical harmonics are very much like the trigonometric polynomials on
the circle in R2. In particular, it can be shown that the spherical harmonics
have closed linear span in L2 equal to all L2 functions.

For the purposes of using spherical harmonics in the contex of several
complex variables, it is useful to consider bigraded spherical harmonics. This
means that we classify a harmonic polynomial to be of type (p, q) if it is of
degree p in the z variables and of degree q in the z variables. Thus we see
in particular that a holomorphic polynomial is of type (p, 0) and a conjugate
holomorphic polynomial is of type (0, q). Now we have

Theorem 8: Let B = B(0, 1) denote the unit ball in Cn. Let U be a
neighborhood of ∂B. Suppose that f is a holomorphic function on U ∩ B.
Then there is a holomorphic F on B such that F |U∩B = f |U∩B.

Proof: Consider the bigraded spherical harmonic expansion of f on S = ∂B.
Of course it will have only terms of type (p, 0). Call them pj . So

f

∣∣∣∣
S

=
∑

j

ajpj ,

where the aj are complex coefficients. The series converges in the L2 topology
of ∂B. But then, by way of the standard Poisson integral formula, we see
that the series also converges uniformly on compact subsets of B. And, since
the partial sums are holomorphic, the full sum is a holomorphic function—in
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fact it is the function F that we seek.

7 Even More General Versions of the Har-

togs Phenomenon

It is natural to wonder, in Theorem 7, why we need to suppose that the func-
tion f is holomorphic in an entire neighborhood of ∂Ω. Could we not begin
with a function f defined only on ∂Ω and put some differential condition on
f that would guarantee a holomorphic extension to the interior?

The answer is yes, and we briefly sketch some of the particulars (without
proof) here. Let Ω ⊆ Cn be a domain with C1 boundary. As is customary
in this subject, we write

Ω = {z ∈ C
n : ρ(z) < 0} .

We mandate that ∇ρ 6= 0 on ∂Ω and we call ρ a defining function for Ω (see
[KRA1] for discussion of this concept).

Let f be a C1 function on ∂Ω. We say that f satisfies the tangential
Cauchy-Riemann equations on ∂Ω if ∂f ∧ ∂ρ = 0 on ∂Ω. Thus, in a sense,
f satisfies the tangential Cauchy-Riemann equations if it is holomorphic in
complex tangential directions on ∂Ω. We often call such a function a CR
function. Further details of these ideas are provided in [FOK] and [KRA4].

The fundamental result from this point of view is stated next. This theo-
rem is generally attributed to Bochner [BOC], though it was anticipated by
to work of Kneser [KNE]. A nice exposition of the matter appears in [HOR,
p. 31].

Theorem 9: Let Ω ⊆ Cn be a bounded domain with C1, connected
boundary. Let f be a CR function on ∂Ω. Then there is a function F ,
continuous on Ω, such that

• The function F agrees with f on ∂Ω;

• The function F is holomorphic on Ω.

The proof of this result is a sophisticated exercise with the ∂ operator—-
certainly related to the proof of Theorem 7. We omit the details, but refer the
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reader to [HOR]. This is a very natural extension of the Hartogs phenomenon,
for it treats the boundary more intrinsically.

It is interesting to note that a local version of Theorem 9 is in general
false. That is to say, if U is a small open set that intersects ∂Ω, and if f is
a CR function on U ∩ ∂Ω, then it does not necessarily follow that f can be
continued to a holomorphic function on one side of U ∩ ∂Ω.

8 A Metric Approach to Hartogs

In this section we present a point of view that is based in metric geometry,
but that also has the flavor of real variables. The primary source for this
idea is [KRA5], but the concept is developed a bit in [KRA6].

We begin by recalling the Kobayashi metric from geometric function the-
ory. If Ω1 and Ω2 are domains, each in some complex space, then we define
Ω1(Ω2) to be the collection of all holomorphic maps from Ω2 to Ω1 (note that
we follow the custom from cohomology theory for the order of the domains).
As usual we let D denote the unit ball in C. Now we have:

Definition 10 Let Ω ⊆ Cn be open. Let e1 = (1, 0, . . . , 0) ∈ Cn. The
infinitesimal form of the Kobayashi/Royden metric is given by FK : Ω×C

n →
R, where

FΩ
K(z, ξ) ≡ inf{α : α > 0 and ∃f ∈ Ω(D) with f(0) = z, (f ′(0)) (e1) = ξ/α}

= inf

{
|ξ|

|(f ′(0))(e1)|
: f ∈ Ω(D), (f ′(0))(e1) is a

constant multiple of ξ

}

=
|ξ|

sup{|(f ′(0))(e1)| : f ∈ Ω(B), (f ′(0))(e1) is a constant multiple of ξ}
.

One would like to think that the Kobayashi metric is complete on a
smooth, pseudoconvex domain. And there is evidence that this is so (see, for
instance, [FOLE]). By contrast, we have the following surprising result on
a non-pseudoconvex domain (which domain is very much in the vein of the
Hartogs extension phenomenon). See [KRA5].
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Proposition 11 Let

Ω = {(z1, z2) : 1 < |z1|
2 + |z2|

2 < 4} .

For ε > 0, let Pε = (−1 − ε, 0) ∈ Ω. Then

fΩ
K(Pε, (1, 0)) ≈ ε−3/4 .

We cannot provide the details of the proof here; suffice it to say that it is a
tricky calculation.

This proposition says in effect that the behavior of the normal derivative
of a holomorphic function near a pseudoconcave boundary point is better
than one might expect (the classical result of Hardy would anticipate ε−1

rather than ε−2/4—see [GOL]). As a result, using a classical argument as in
[GOL] or [KRA7], one will find that the following is true.

Proposition 12 Let Ω be as in the last proposition. Let f be any holomor-

phic function on Ω. Then f continues to be Lipschitz 1/4 in a neighborhood

of the boundary point (−1, 0) in ∂Ω.

We see that this is, philosophically, in the vein of the Hartogs phe-
nomenon. For it says that an arbitrary holomorphic function behaves much
better in a neighborhood of a strongly pseudoconcave point than one might
have expected. It does not anticipate the stronger result of analytic contin-
uation, but it could be considered to be the real variable analogue.

9 Concluding Remarks

The Hartogs extension phenomenon is one of the most basic ideas in the func-
tion theory of several complex variables. It led naturally and immediately to
the question of giving an extrinsic geometric characterization of domains of
holomorphy. This became known as the Levi problem, and it occupied much
of our attention in the first half of the twentieth century. It was ultimately
solved by Oka, Bremerman, Narasimhan, Grauert, and others. The solution
requires powerful machinery such as the Cousin problems or sheaf cohomol-
ogy or partial differential equations. We certainly cannot provide the details
here, but refer the reader to [KRA1] or [HOR].
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It is always interesting and stimulating to have many approaches to an
important and fundamental result. We have seen even in this short arti-
cle how this multi-faceted approach can lead to new connections and new
insights. The spherical harmonic approach presented here is new, and may
lead to further investigations in the future. The metric/real variable approach
in Section 8 is a definite novelty, and suggests a new approach to function
theory that may even reveal new phenomena in one complex variable.
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