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Abstract: We begin by studying characterizations of pseudocon-
vexity, and also of finite type, using analytic discs. The results
presented are analogous to well-known ideas from the real vari-
able setting in which “pseudoconvex” is replaced by “convex” and
“analytic disc” is replaced by “line segment”.

The second part of the paper concerns regularity results for the
Kobayashi metric. Of course this metric is defined using analytic
discs, so the discussion is a natural extension of that in the first
part of the paper. We also comment on the Carathéodory metric.

0 Introduction

Convexity is a classical idea. Archimedes used a version of convexity in his
considerations of arc length. Yet the idea was not formalized until 1934 in
the monograph of Bonneson and Fenchel [BOF].

The classical definition of convexity is this: An open domain Ω ⊆ RN is
convex if, whenever P,Q ∈ Ω, then the segment PQ connecting P to Q lies
in Ω. We call this the synthetic definition of convexity. It has the advantage
of being elementary and accessible (see [VAL]). The disadvantages are that
it is non-quantitative and non-analytic. It is of little use in situations of
mathematical analysis where it is most likely to arise.

The analytic definition of convexity is a bit more recondite. Let Ω ⊆ RN

have C2 boundary. For us this means that there exists a C2 function ρ defined

1Author supported in part by a grant from the Dean of Graduate Studies at Washington
University in St. Louis and also a grant from the National Science Foundation. He thanks
the American Institute of Mathematics for its hospitality and support during this work.
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in a neighborhood U of ∂Ω such that

Ω ∩ U = {x ∈ U : ρ(x) < 0}

and further that ∇ρ 6= 0 on ∂Ω. We call ρ a defining function for Ω. Let
P ∈ ∂Ω. We say that a vector w ∈ RN is a tangent vector to ∂Ω at P , and
we write w ∈ TP (∂Ω), if

N∑
j=1

∂ρ

∂xj

(P )wj = 0 .

The domain Ω is said to be analytically convex at P if

N∑
j,k=1

∂2ρ

∂xj∂xk

(P )wjwk ≥ 0 (1)

for all w ∈ TP (∂Ω).
A moment’s thought reveals that the condition (1) simply mandates that

the second partial derivative of ρ in the direction w be nonnegative. This is
the classical “convex up” condition from calculus. This analytic definition of
convexity has the advantage that it can be localized to individual boundary
points, and it is quantitative. It is a straightforward exercise (see [KRA1, pp.
122–123]) to see that the analytic definition of convexity is equivalent to the
synthetic definition of convexity, at least for domains with C2 boundary.

The notion of pseudoconvexity has a slightly different ontology. Discov-
ered by E. E. Levi in the study of domains of holomorphy, this idea was first
formulated in its analytic form. Let Ω ⊆ Cn have C2 boundary. Let ρ be
a C2 defining function for Ω as in our earlier discussion of convexity. Let
P ∈ ∂Ω. We say that ξ ∈ Cn is a complex tangent vector at P , and we write
ξ ∈ TP (∂Ω), if

n∑
j=1

∂ρ

∂zj

(P )ξj = 0 .

The point P is said to be a point of Levi pseudoconvexity if

n∑
j,k=1

∂2ρ

∂zj∂zk

(P )ξjξk ≥ 0 (2)

for all ξ ∈ TP (∂Ω).
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It is not a simple matter to give an elementary geometrical interpretation
to the expression (2). Part of the purpose of the present paper is to come to
some basic geometric understanding of this notion of pseudoconvexity.

It is appropriate to record in passing a classical, alternative notion of
pseudoconvexity. Let Ω ⊆ Cn be any domain (smoothly bounded or not).
We say that Ω is Hartogs pseudoconvex if, with δΩ denoting the function of
Euclidean distance to the boundary, we have that − log δΩ is plurisubhar-
monic on Ω. It is known—see [KRA1, p. 144]—that a domain Ω with C2

boundary is Levi pseudoconvex if and only if it is Hartogs pseudoconvex.
While the notion of Hartogs provides a sort of synthetic idea of pseu-

doconvexity, it is not strictly analogous to the idea that is used in classical
convexity theory. Convexity has played an increasingly prominent role in the
function theory of several complex variables in recent years (see [LEM] and
[MCN1], [MCN2]). Thus it is worthwhile to be able to develop in further
detail the analogy between classical convexity theory and modern pseudo-
convexity theory. That is our purpose in the present paper.

In the development of Sections 1–3, we shall certainly see several points of
contact with classical ideas (see [KRA1], especially Theorem 3.3.5 therein).
The significance of this point of view for pseudoconvexity has been borne
out in many contexts, particularly in the study of automorphism groups.
See especially [GRK2] where this approach is used decisively.

It is a pleasure to thank both the editor and the referee for their careful
readings of this paper, and for contributing many constructive comments
that have led to a more precise and forceful exposition.

1 Analytic Discs and Pseudoconvexity

The results that we present here have a history. Certainly they are related to
the classical Kontinuitätssatz, for which see [KRA1, p. 144]. But the proofs,
of necessity, are different.

Let D ⊆ C be the unit disc. An analytic disc in Cn is a nonconstant
holomorphic mapping ϕ : D → Cn. A closed analytic disc in Cn is a con-
tinuous mapping ψ : D → Cn such that ψ

∣∣
D

is holomorphic. In practice we
may refer to either of these simply as an “analytic disc”. The boundary of a
closed analytic disc is just ψ(∂D). It will frequently be convenient to confuse
the mapping ϕ or ψ with the image disc ϕ(D) or ψ(D). We do so without
further comment. The center of an analytic disc is ϕ(0) or ψ(0).
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In this paper we shall think of the boundary of a closed analytic disc as
the complex-analytic analogue of two points P and Q in the classical theory
of convex sets. We shall think of the (image) analytic disc ψ(D) as the
complex-analytic analogue of the segment PQ that connects P and Q in the
real-variable context.

Thus we should like to have a characterization of pseudoconvexity, in
terms of analytic discs, that is parallel to the synthetic characterization of
convexity in terms of segments. It is the following.

Proposition 1 Let Ω ⊆ Cn be a bounded domain with C2 boundary. Then
Ω is pseudoconvex in the classical sense if there is a number δ0 > 0 so that,
whenever ψ : D → Cn is a closed analytic disc in Cn with diameter less than
δ0, and if ψ(∂D) ⊆ ∂Ω, then ψ(D) ⊆ Ω.

Proof: Let “dist” denote Euclidean distance. Choose ε0 > 0 so that

Uε0 ≡ {z ∈ Cn : dist(z, ∂Ω) < ε0}

is a tubular neighborhood of ∂Ω (see [HIR]). Let δ0 = ε0/100. Let ψ be
a closed analytic disc as in the statement of the proposition. It follows
immediately that the (image of the) closed analytic disc lies entirely inside
the tubular neighborhood Uε0 .

2 Now there are two cases:

(a) Some point of ψ(D) lies outside Ω. In this case let p0 ≡ ψ(ζ0) be
the point of ψ(D) that lies furthest from ∂Ω. Let ν be the unique
normal vector from ∂Ω out to p0. Say that ν emanates from the base
point q0 ∈ ∂Ω. Then the domain

Ω̂ ≡ Ω + ν = {z + ν : z ∈ Ω}

has the property that the disc ψ(D) is tangent to ∂Ω̂ at p0 and the

punctured disc ψ(D) \ {p0} lies entirely in Ω̂. But of course Ω̂ is pseu-
doconvex with C2 boundary. So this last is impossible (see [KRA1, p.
144]). We have eliminated this case.

(b) All points of ψ(D) lie in Ω. In this case ψ(D) ⊆ Ω and we are done.

2The purpose of forcing the analytic disc to lie inside a tubular neighborhood is to
guarantee that the disc does not form the basis of a homology class in the boundary.
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An argument similar to the one just presented, but even simpler, gives the
following result. It is closer to the spirit of the classical synthetic definition
of convexity.

Proposition 2 Let Ω ⊆ Cn be a bounded domain with C2 boundary. Then
Ω is pseudoconvex in the classical sense if there is a number δ0 > 0 so that,
whenever ψ : D → Cn is a closed analytic disc in Cn with diameter less than
δ0, and if ψ(∂D) ⊆ Ω, then ψ(D) ⊆ Ω.

Yet another variant is this:

Proposition 3 Let Ω ⊆ Cn be a bounded domain with C2 boundary. Then
Ω is pseudoconvex in the classical sense if there is a number δ0 > 0 so that,
whenever ψ : D → Cn is a closed analytic disc in Cn with diameter less than
δ0, and if ψ(∂D) ⊆ Ω, then ψ(D) ⊆ Ω.

2 The Concept of Finite Type

The idea of finite type was first conceived in the paper [KOH] of Kohn.
Kohn’s idea was to measure the complex-analytic flatness of a boundary
point of a domain in C2; this was conceived as an obstruction to subelliptic
estimates for the ∂-Neumann problem.

Later, Bloom and Graham [BLG] generalized Kohn’s work to higher di-
mensions. Perhaps more significantly, they isolated two very interesting def-
initions of finite type and proved them to be equivalent. We now briefly
review these two definitions.

Definition 1 Let Ω ⊆ Cn be a domain with C∞ boundary. Let ρ be a
smooth defining function for Ω. Let P ∈ ∂Ω. Let m be a positive integer.
We say that P has geometric type at least m if there is a nonsingular (for
us nonsingular means that ϕ′(0) 6= 0) analytic disc ϕ : D → Cn such that
ϕ(0) = P and

|ρ(ϕ(ζ))| ≤ C|ζ|m . (3)

The greatest m for which this is true is called the type of the point P . If
there is no greatest m then the point P is said to be of infinite type.
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Of course a point P ∈ ∂Ω has complex tangent space TP (∂Ω). Note
that ∂Ω has real dimension 2n − 1. If V is a small neighborhood of P in
∂Ω, then we may write down a collection L1, . . . , Ln−1 of holomorphic vector
fields on V that are linearly independent at each point of V . A commutator
(or Poisson bracket) [Lj, Lk] or [Lj, Lk] or [Lj, Lk] is called a second-order
commutator. If M is a pth-order commutator, then [M,Lj] or [M,Lj] is
called a (p+ 1)st-order commutator.

Definition 2 Let Ω ⊆ Cn be a domain with C∞ boundary. Let ρ be a
smooth defining function for Ω. Let P ∈ ∂Ω. Let m be a positive integer.
We say that P has commutator type m if any commutator N of order m− 1
or less satisfies

〈N, ∂ρ〉 = 0

but there is some commutator N ′ of order m that satisfies

〈N ′, ∂ρ〉 6= 0 .

The theorem of Bloom and Graham [BLG] says that, in C2, a point
P ∈ ∂Ω is of geometric type m if and only if it is of commutator3 type
m. A brief proof of this statement appears in [KRA1, p. 469]. In higher
dimensions this equivalence is still not fully understood, although there has
been heartening recent progress by Fornæss and Lee [FOL].

John D’Angelo and David Catlin have demonstrated the importance of
the concept of finite type, both for function theory and for the study of the
∂-Neumann problem (see [DAN] and references therein). See also the work
of Baouendi, Ebenfelt, and Rothschild [BER]. It is worthwhile to be able to
understand points of finite type from a variety of different geometric points
of view.

Our goal here is to understand the concept of finite type from the point
of view of analytic discs, analogous to our understanding of pseudoconvexity
in the last section. We continue to let “dist” denote Euclidean distance.
We also let “H-dist” denote the Hausdorff distance on sets (see [KRP1],
[KRP2]). The result we are about to present is certainly related to the work of
Dwilewicz and Hill [DWH1], [DWH2]. These authors announce their results
in all dimensions; but in the end they only prove them in dimension two.
The results of the present paper are valid in all dimensions.

3There is an analogous result in dimension n for any n, but it necessitates a modified
definition of “geometric type”. The 2-dimensional result is implicit in the paper [KOH].
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Proposition 4 Fix a domain Ω ⊆ Cn with smooth (that is, C∞) boundary.
Let P ∈ ∂Ω. Fix an integer m > 0. If P has geometric type m then there is
a sequence ϕj : D → Ω of analytic discs satisfying

(a) ϕj(0) → P as j →∞.

(b) diam(ϕj(D)) ≡ δj → 0 as j →∞.

(c) H-dist(ϕj(D), ∂Ω) ≤ δm
j .

Proof: Let ϕ : D → Cn be an analytic disc that is tangent to ∂Ω at P to
maximal order m as in line (3). Let ν be the unit outward normal vector to
∂Ω at P . Then the discs

ϕj = ϕ− 1

j
ν

will satisfy the three conclusions of the proposition. In detail: For (a), we
get the result by inspection of the definition of ϕj. For property (b), note
that calculations in [KRA4] verify the result because the normal term in
the Taylor expansion of the defining function is to the first power while the
first tangential term is to the mth power. The argument for (c) is similar.4

Proposition 5 Fix a domain Ω ⊆ Cn with smooth (that is, C∞) boundary.
Let P ∈ ∂Ω. Fix an integer m > 0. Assume that there is a sequence
ϕj : D → Ω of analytic discs satisfying

(a) ϕj(0) → P as j →∞.

(b) diam(ϕj(D)) ≡ δj → 0 as j →∞.

(c) H-dist(ϕj(D), ∂Ω) ≤ δm
j .

Then P has geometric type at least m.

Proof: Consider a disc ϕj as given in the proposition. The fundamental
theorem of calculus tells us that the tangent to the image disc at a point
ϕj(ζ) must be tangent to the boundary at the corresponding projected point

4Of course ϕj will have to be replaced by ϕj(cj · ζ), with cj a positive constant of size
about 1/j1/m, so that the image disc lies entirely in Ω.
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π(ϕj(ζ)) (where π : U → ∂Ω is Euclidean normal projection and U is a tubu-
lar neighborhood of ∂Ω as discussed earlier). In particular, there must be a
point near the center of the disc at which the tangent is also tangent to the
boundary. But then the normal translation of the disc will give an analytic
disc tangent to the boundary at a point qj. And the order of tangency must
be at least m because of the condition (c). These points qj tend to the base
point P by construction. Taking the limit in the definition (3) of finite type,
one concludes that the point P has geometric type at least m.

3 Other Geometric Conditions Involving An-

alytic Discs

Let Ω be a smoothly bounded domain in Cn. Let P ∈ ∂Ω. We now consider
the following definition.

Definition 3 Suppose that ψ : D → Ω is a closed analytic disc. Assume
that whenever ψ(∂D) ⊆ ∂Ω then ψ(D) ∩ ∂Ω = ∅. Then we say that every
point of ∂Ω is complex analytically extreme.

This definition is analogous to the classical notion of “extreme point”
from the theory of convex sets (see, for example, [VAL]). It is not the case
that a domain satisfying the condition of this last definition must have the
property that every boundary point is finite type. The example

Ω = {(z1, z2) ∈ C2 : |z1|2 + 2e−1/|z2|2 < 1}
illustrates the point. One might hope that every analytically extreme point
is a peak point (see [KRA1, p. 141] for a thorough discussion); that would be
a matter of considerable interest. This point is not completely understood
at this time. However J. Yu’s ideas about h-extendible points [YU1], [YU2]
certainly shed light on the matter.

4 Some Examples, and Comparison with Har-

monic Discs

EXAMPLE 4 Let

A = {ζ ∈ C : 1/2 < |ζ| < 2}
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and set
Ω = A×D .

Then Ω is a pseudoconvex domain in C2. It is a standard result—see [KRA1,
p. 144]—that Ω may be exhausted by an increasing union of smoothly bounded,
strongly pseudoconvex domains Ωj. Thus we may choose j so large that

dist(∂Ωj, ∂Ω) < 10−10 .

Now it is the case that the analytic disc

ψ : D → Ωj

ζ 7→ (ζ, 0)

has the property that ∂ψ lies in Ωj while the entire disc does not.

This example does not contradict our characterization of pseudoconvexity
with analytic discs (Proposition 1) because in that proposition we take the
discs sufficiently small that they do not generate any nontrivial homology
classes (see particularly the corresponding footnote).

EXAMPLE 5 Let

A = {ζ ∈ C : 1/2 < |ζ| < 2}

and set

Ω̃ = (A×D) ∪
(
D(0, 2)× {ζ ∈ D : Re ζ < −3/4}

)
.

The disc

ψ : D → Ω̃

ζ 7→ (ζ, 0)

still has the property that ∂ψ(D) ⊆ Ω̃. Yet the full disc does not lie in Ω̃.
However, note that this Ω is not pseudoconvex. Indeed the smallest pseu-

doconvex domain that contains Ω is D(0, 2) × D. Thus, even though the
disc ψ has boundary curve that is homotopic to a point, the example is
insignificant because the domain is not pseudoconvex.
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It is natural to wonder whether analytic discs are the optimal device to
use to measure pseudoconvexity. Perhaps harmonic discs—which we use in
effect to recognize plurisubharmonic functions—are more appropriate. They
would certainly be more flexible. Here by a harmonic disc we mean the
following. Let η : {eiθ : 0 ≤ θ ≤ 2π} → Cn be a continuous function with
η(ei0) = η(ei2π). Now solve the Dirichlet problem with boundary data η to
obtain a harmonic function

u : D → Cn

that is continuous up to the boundary. Is there a characterization of pseu-
doconvex domain using harmonic discs that is analogous to Proposition 1?

Certainly we may note that if (i) whenever the boundary of an analytic
disc is in Ω then the corresponding harmonic disc is in Ω, then (ii) certainly
the same is true for holomorphic discs. So, by what we have already proved,
the domain must be pseudoconvex. What is false is the converse, as the next
example shows.

EXAMPLE 6 Let

E = {ζ ∈ C : 1 < max{|Re ζ|, |Im ζ| < 2} .

This is a large square box with a smaller square box removed. Let

Ω = E ×D .

Of course Ω is pseudoconvex.
Let η : [0, 1] → Ω be a closed curve such that

• η(t) = (η1(t), 0);

• the image of η lies within ε > 0 of the boundary for some small ε;

• η1 traces entirely along two edges of the square {max{|Re ζ|, |Im ζ|} =
1 + ε/2}.

Then harmonic measure (see [GAM] or [KRA3]) shows that the harmonic
disc with boundary curve η will have points lying outside Ω.
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5 Introduction to the Kobayashi Metric

The Kobayashi or Kobayashi/Royden metric FΩ
K(z, ξ), and its companion

the Carathéodory metric FΩ
C (z, ξ), has, in the past 40 years, proved to be an

important tool in the study of function-theoretic and geometric properties of
complex analytic objects—see [KOB1], [KOB2], [KOB3], for example. One
remarkable feature of this tool is that quite a lot of mileage can be had just by
exploiting formal properties of the metric (e.g., the distance non-increasing
property under holomorphic mappings). See [JAP], [EIS], [KRA2]. But more
profound applications of these ideas require hard analytic properties of the
metric. One of the first, and most profound, instances of this type of work
is [GRA]. Another is [LEM].

Our goal now is to continue some of the basic development of analytic
facts about the Carathéodory and Kobayashi metrics. Our focus in fact is
on regularity of the metric. It is well known (see [JAP, pp. 98–99]) that the
infinitesimal Kobayashi metric is always upper semicontinuous. The reference
[JAP] goes on to note that, on a taut domain,5 the infinitesimal metric is
in fact continuous. Continuity of the Carathéodory metric was studied, for
example, in [GRK1].

But one would like to know more. For various regularity results, and
applications in function theory, it is useful to know that the infinitesimal
metrics are Lipschitz as a function of the two arguments. In the present
paper we prove such a result (in the case of the Kobayashi metric) when the
domain of study Ω is smoothly bounded and strongly Levi pseudoconvex; we
also prove such a result for the Carathéodory metric.

All necessary definitions of key concepts will be provided below.

6 Fundamental Concepts Concerning

the Kobayashi Metric

In the discussion that follows we let D denote the unit disc in C.
A domain Ω ⊆ Cn is a connected, open set. It is common to let U1(U2) de-

note the collection of holomorphic mappings from U2 to U1. The infinitesimal

5Here a domain Ω is taut, as originally defined by H. H. Wu in [WU], if the family of
holomorphic mappings of the disc D into Ω is normal. Kerzman [KER] has shown that a
C2 pseudoconvex domain is taut.
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Kobayashi metric on Ω is defined, for P ∈ Ω and ξ ∈ Cn, to be

FΩ
K(P, ξ)

≡ inf{α : α > 0 and ∃f ∈ Ω(D) with f(0) = P, f ′(0) = ξ/α}

= inf

{
|ξ|

|f ′(0)|
: f ∈ Ω(D), f(0) = P, f ′(0) is a positive, constant multiple of ξ

}
=

|ξ|
sup{|(f ′(0))| : f ∈ Ω(D), f(0) = P, f ′(0) is a positive, constant multiple of ξ}

.

Here |ξ| denotes the standard Euclidean length of the vector ξ.
It is frequently convenient to think of ξ as an element of the tangent space

to Ω at z; this notion will have no bearing on the present discussion. There
is also an integrated form of the Kobayashi metric (see [KRA1, p. 437]). It
will play only a tacit role in the present paper.

It is well known that, if Φ : Ω1 → Ω2 is a holomorphic (not necessarily
biholomorphic) mapping, then

FΩ1
K (z, ξ) ≥ FΩ2

K (Φ(z),Φ∗ξ) .

Here Φ∗ξ is the standard push-forward of the vector ξ (see [FED]). It follows
immediately that, in case Φ is biholomorphic, then Φ induces an isometry of
Kobayashi metrics.

We shall do our work in this paper on Levi pseudoconvex domains. This
terminology and related concepts was considered in some detail in the first
part of the paper. See also [KRA1, p. 127].

7 The Main Result

The principal result about the Kobayashi metric is as follows.

Theorem 6 Assume that Ω is strongly pseudoconvex with C6 boundary.
Let K ⊆ Ω and L ⊆ Cn be compact sets. There is a constant C = CK,L > 0
such that, if z, z′ ∈ K and ξ, ξ′ ∈ L, then

∣∣FΩ
K(z, ξ)− FΩ

K(z′, ξ′)
∣∣ ≤ CK,L ·

[√
|z − z′|2 + |ξ − ξ′|2

]2/3

.
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8 Proof of the Main Result

This section is dedicated to the proof of Theorem 6. We begin with two
lemmas.

Lemma 7 Let Ω ⊆ Cn be a smoothly bounded, strongly pseudoconvex do-
main. Let P ∈ Ω be sufficiently near the boundary, and let ξ be a complex
transversal direction at P . We may assume that ξ is a Euclidean unit vector.
Fix a compact subset K ⊂ Ω. There is a universal constant c > 0 with the
following property:

Let ϕ be a Kobayashi extremal disc for the point P in the direction ξ. If
ε > 0 is small and ζ ∈ D has distance ε from the boundary of D, then

distEucl(ϕ(ζ), ∂Ω) ≈ c · ε .

If instead ξ is a Euclidean unit vector that is complex tangential at P ,
then we have the estimate

distEucl(ϕ(ζ), ∂Ω) ≈ c · ε3/2 .

The converses of both these statements are true as well.

Proof: The first result follows from the main results of [HUA1, Theorem 1,
p. 284, Corollary 1, p. 284] and [HUA2, Theorem 2, p. 400]. The main fact
is that this extremal mapping ϕ is totally geodesic provided that P is close
enough to the boundary and ξ is complex transversal. The results of Huang
require C3 boundary.

The second result follows from estimates in [BUK, Prop. 4.3, p. 666].
The main idea is that, as an elementary calculation shows, a point that
is distance ε from the boundary inside a tangential extremal disc (which
is totally geodesic by results of [BUK] as indicated) actually has normal
Euclidean distance about ε3/2 from the boundary of Ω. Note that the results
of [BUK] require the domain to have C6 boundary.

See also [FU] for information about extremal properties of the Kobayashi
metric and discs.

Lemma 8 Let U be a smoothly bounded domain in C. There are posi-
tive constants C ′, C ′′ with the following property. Consider the differential
equation

∂

∂ζ
u(ζ) = f(ζ) dζ (5)
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on U . Suppose that f is C1, and that there is a constant C1 > 0 such that
|f | ≤ C1, and that |∇f | ≤ C1. Then there is a solution u for (5) that satisfies

|u| ≤ C1 · C ′ and |∇u| ≤ C1 · C ′′ .

Proof: This result may be found in [KRA1, p. 411 ff.] and references therein.

Proof of the Main Theorem:

We separate the case of perturbation of the base point P from the case
of perturbation of the tangent vector ξ.

Let Ω ⊆ Cn be a pseudoconvex domain with C6 boundary, P ∈ Ω a point,
and ξ ∈ Cn a tangent vector that is unit in the Euclidean metric.

We have observed that the domain Ω is taut. So a simple normal families
argument (see [JAP]) shows that there is a mapping ϕ : D → Ω with ϕ(0) =
P and ϕ′(0) parallel to ξ so that

|ξ|
|ϕ′(0)|

= FΩ
K(z, ξ)

= inf

{
|ξ|

|f ′(0)|
: f ∈ Ω(D), f(0) = P,

f ′(0) is a positive constant multiple of ξ

}
.

Now let η : D → R+ be a C∞ cutoff function with these properties:

(a) 0 ≤ η ≤ 1;

(b) η ≡ 1 on D(0, 1/4);

(c) η(ζ) = 0 for |ζ| > 1/2.

Certainly we may say that |∇η| ≤ C1, |∇2η| ≤ C1 for some C1 > 0.
Define k0 = [48(C ′ +C ′′ +C1 + c+ 10)]2, where C ′, C ′′ are the constants

from the estimates for the ∂ problem (see Lemma 8), C1 is the constant from
the estimates on |∇η|, and c comes from Lemma 7. Let µ be any Euclidean
unit vector in Cn. Let ε > 0 be small. Then let

h(ζ) = η(ζ) · [ϕ(ζ)+(ε3/2/k0) ·µ]+ [1−η(ζ)] ·ϕ(ζ)+
√
ε3/2/k0 · ζ2 ·χ(ζ) . (6)
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There are three terms on the righthand side of the definition of h. The first
two of these should be thought of as a small perturbation of the extremal
mapping ϕ. The third is a correction term which we hope to choose (using
the ∂ problem) so as to make h holomorphic.

Now we have

0 = ∂h = ∂η · [ϕ+ (ε3/2/k0) · µ]− ∂η · ϕ+
√
ε3/2/k0 · ζ2 · ∂χ .

Thus we must solve the equation

∂χ =

√
k0√

ε3/2 · ζ2

[
−∂η[ϕ+ (ε3/2/k0)µ] + ∂η · ϕ

]
= −∂η ·

√
ε3/2 · µ√

k0 · ζ2
. (7)

Of course ∂η vanishes in a neighborhood of ζ = 0 so that the righthand side
of (6) is well defined and smooth.

If we take |∇η| ≤ C and |∇2η| ≤ C then of course the righthand
side of this last equation, together with its first derivatives, is bounded by
C
√
ε3/2/[

√
k0 · (1/4)2]. It is also ∂-closed. Thus, by Lemma 8, the equa-

tion (7) has a bounded solution χ with bound C1 · C ′
√
ε3/2/[

√
k0 · (1/4)2] ≤√

ε3/2/[4(c + 1)]; also that solution has bounded gradient—smaller than

C1 · C ′′
√
ε3/2/[

√
k0 · (1/4)2] ≤

√
ε3/2/[4(c + 1)]. Thus if we define h̃(ζ) =

h((1− ε)ζ), then (by Lemma 7) h̃ maps D to Ω. Thus h̃ is a good candidate

disc for the Kobayashi metric for the point h̃(0) = P + (ε3/2/k0) · µ = P̃ .

Note that h̃ is not necessarily extremal.
Putting the function χ into (6), we can be sure (because the third term

on the righthand side of (6) is plainly much smaller than the other two—after
all, η is bounded from 0 on a large set and ϕ′(0) is bounded from 0) that χ
does not simply cancel the first two terms in the definition of h. And we now
know that h is holomorphic.

We now compare the infinitesimal Kobayashi metric at the base point P
in the direction ξ with the metric at the base point P̃ in the direction ξ.
What we must examine is

|ξ|
|ϕ′(0)|

− |ξ|
|h̃′(0)|

=
|ξ| · [|h̃′(0)| − |ϕ′(0)|]

|ϕ′(0)| · |h̃′(0)|
.

Of course the denominator is bounded from zero and |ξ| = 1. We see that∣∣|h̃′(0)| − |ϕ′(0)|
∣∣ ≤

∣∣h̃′(0)− ϕ′(0)
∣∣

=
∣∣(1− ε)h′(0)− ϕ′(0)| .
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And now we use the original definition of h to see that this last difference
is

(1− ε)ϕ′(0)− ϕ′(0) .

Thus we have an error term of the form −εϕ′(0).
In detail, what we have proved is that, for any extremal disc ϕ at (P, ξ),

there is a “nearby” candidate disc (not necessarily extremal) h̃ for (P̃ , ξ) that
satisfies favorable estimates. Thus

|ξ|
|h̃′(0)|

− c · ε ≤ |ξ|
|ϕ′(0)|

, (8)

where ε is small and depends on ε, ε, and ε in obvious ways. In other words,

|ξ|
|h̃′(0)|

− c · ε ≤ FΩ
K(P, ξ) . (9)

A similar argument, reversing the roles of P and P̃ , shows that

|ξ|∣∣˜̃h′(0)∣∣ − c · ε ≤ FΩ
K(P̃ , ξ) (10)

for some other candidate mapping
˜̃
h at P for the direction ξ, and for some

small positive number ε.
But (10) certainly says that

FΩ
K(P̃ , ξ) ≤ |ξ|

|h̃′(0)|
≤ FΩ

K(P, ξ) + c · ε

and (10) says that

FΩ
K(P, ξ) ≤ |ξ|∣∣˜̃h′(0)∣∣ ≤ FΩ

K(P̃ , ξ) + c · ε .

We thus conclude that

|FΩ
K(P, ξ)− FΩ

K(P̃ , ξ)| ≤ c · ε+ c · ε .

But note that |P − P̃ | = ε3/2/k0. So we may conclude that FΩ
K is Lipschitz

of order 2/3.
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Next one must examine variation in the tangent vector ξ. But the argu-
ment is substantially the same. We may treat rotation of the tangent vector
ξ and dilation of the tangent vector ξ separately.

For the case of rotation, we let Ξ be a unitary rotation on Cn that is near
to the identity and we set

h(ζ) = η(ζ) · Ξ[ϕ(ζ)] + [1− η(Ξζ)] · ϕ(ζ) +
√
ε/k0 · ζ2 · χ(ζ) . (11)

and then argues precisely as above. One should note here that h′(0) = Ξ(ξ),
just as we wish.

For the case of dilation, we let ε∗ > 0 and define

h(ζ) = η(ζ) · (1 + ε∗)ϕ(ζ) + [1− η(ζ)] · ϕ(ζ) +
√
ε · ζ2 · χ(ζ) . (12)

and then argues just as before. One should note here that h′(0) = (1 + ε∗)ξ,
just as we wish.

It may be noted that our argument applies uniformly over a neighborhood
of P (the size of the neighborhood depending on ε), so that a standard com-
pactness argument shows that our estimates obtain uniformly over compact
sets.

That completes our argument, and proves the theorem.

9 The Carathéodory Metric

As a complement to the result of the preceding two sections, we now prove
a result about the Carathéodory metric. A form of the result presented here
appears in Proposition 2.5.1 of [JAP]. We include it here for completeness.

We begin with a quick review of that metric.
Let Ω ⊆ Cn be a domain, P ∈ Ω, and ξ ∈ Cn a vector. Then we define

the infinitesimal Carathéodory metric at P in the direction ξ to be

FC(P, ξ) = sup
f∈D(Ω)
f(P )=0

|f∗(P )ξ| ≡ sup
f∈D(Ω)
f(P )=0

∣∣∣∣∣
n∑

j=1

∂f

∂zj

(P ) · ξj

∣∣∣∣∣ .
Now we have
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Theorem 9 Let Ω ⊆ Cn be a strongly pseudoconvex domain with C3 bound-
ary. Let K ⊆ Ω and L ⊆ Cn be compact sets. There is a constant
C = CK,L > 0 such that, if z, z′ ∈ K and ξ, ξ′ ∈ L, then∣∣FΩ

C (z, ξ)− FΩ
C (z′, ξ′)

∣∣ ≤ CK,L ·
√
|z − z′|2 + |ξ − ξ′|2 .

Proof: Let P ∈ Ω be a fixed point and ξ ∈ Cn a fixed vector. Let ϕ : Ω → D
be a candidate mapping for the infinitesimal Carathéodory metric at P in
the direction ξ. Let ε > 0.

Now let P ′ ∈ Ω be a point that is near to P . Let η ∈ C∞
c (Cn) be a cutoff

function that is equal to 1 near P (so that it is identically 1 in a neighborhood
of P and also in a neighborhood of P ′). Define

h(z) = η(z) · ϕ(P + (z − P ′)) + (1− η(z)) · ϕ(z) + χ(z) .

We think of h as a small perturbation of the extremal mapping ϕ. Notice
that h(P ′) = 0 + χ(P ′). We want to select χ, using the theory of the ∂
problem, so that h is holomorphic.

We have

∂χ(z) = ∂η(z) · ϕ(z)− ∂η(z) · ϕ(P + (z − P ′))

= ∂η(z) · (ϕ(z)− ϕ(P + (z − P ′))) . (12)

The righthand side is of course ∂-closed.
Notice that the righthand side of (12) is small (less than a universal con-

stant C1 times ε) in the uniform topology provided only that P ′ is sufficiently
close to P . In fact the same reasoning shows that it is small in the C1 topol-
ogy. Thus the theory of the ∂ problem on strongly pseudoconvex domains
(see [KRA1, p. 411 ff.], for instance) tells us that we may choose χ to satisfy
(12) and so that χ is C1 small (i.e., bounded by a universal constant times ε)
provided only that P ′ is sufficiently close to P . Thus h is holomorphic and
close to ϕ in the C1 topology. Consequently, for P ′ sufficiently close to P ,
we have

sup
z∈K

|h(z)− ϕ(z)| < ε .

Now we set

h̃(z) = η(z)ϕ(P + (z − P ′)) + (1− η(z))ϕ(z) + χ(z)− χ(P ′)

18



and

ϕ̃(z) =
1

1 + (C1 + 1) · ε
· h̃ .

We see that ϕ̃ is a holomorphic mapping from Ω to D, it takes the value 0
at P ′, and it is close to ϕ in the C1 topology. We may also conclude that the
existence of the mapping ϕ̃ shows that the Carathéodory metric at P ′ in the
direction ξ′ = ξ is C1-close to the metric at P in the direction ξ. To wit,

|ϕ∗(P )ξ| and |ϕ̃∗(P )ξ|

are close.
The same argument holds in reverse if we choose P ′ as the base point at

P as the perturbed point. We may conclude therefore that the infinitesimal
Carathéodory metric varies in the Lipschitz topology when the base point is
perturbed.

A similar, but even easier, argument applies (just as in our discussion of
the Kobayashi metric) when the tangent vector ξ is perturbed. That com-
pletes our argument.

10 Concluding Remarks

We have presented some new ways to think about the classical concept of
pseudoconvexity. Of course our presentation has roots in the most funda-
mental ideas of the subject, but the formulations are new.

It is a natural next question to consider regularity of the infinitesimal
invariant metrics. Our motivation was the study of extremal discs for the
Kobayashi metric in the sense of Lempert [LEM]. But there are many con-
texts in which estimates of this kind may prove useful.
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[KRA2] S. G. Krantz, The Carathéodory and Kobayashi metrics and applica-
tions in complex analysis, American Mathematical Monthly, to appear.

[KRA3] S. G. Krantz, Cornerstones of Geometric Function Theory: Explo-
rations in Complex Analysis, Birkhäuser Publishing, Boston, 2006.
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