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Abstract: It is an old idea to consider whether a function on
RN that is smooth in each variable separately is in fact jointly
smooth. It turns out that some uniformity of estimates in each
variable is necessary for such a result. More recently, there have
been studies of functions that are smooth along integral curves
of certain vector fields. Depending on the commutator properties
of the vector fields, different types of results may be obtained.

Another recent idea is that if one has smoothness along all

curves then the uniformity hypothesis may be dropped.

In the present papers we explore all these approaches to the
problem in a variety of new norms. We present new, simpler
proofs of some classical results. We also explore new theorems in
the real analytic category.

0 Preliminaries

If 0 < α < 1 and f is a function on RN then we say that f belongs to the
α-order Lipschitz space on RN if it satisfies the condition

sup
x∈RN

06=h∈RN

|f(x + h) − f(x)|

|h|α
≡ ‖f‖Λα(RN) < ∞ .

For α = 1 we modify the condition (following Zygmund) to

sup
x∈RN

06=h∈RN

|f(x + h) + f(x − h) − 2f(x)|

|h|
≡ ‖f‖Λ1(RN ) < ∞ .

Inductively, for α > 1, we say that f ∈ Λα(RN ) if f ∈ C1 and ∇f ∈ Λα−1.
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Of course these definitions make sense just as well on any open subset
U ⊆ RN , or more generally on any set S ⊆ RN . We need only require in the
definition that x, x+h, x−h lie in S. If f is defined on an open set U ⊆ RN ,
then we say that f is locally Lipschitz α on U , and write f ∈ Λloc

α (U), if f
∣∣
K

is Lipschitz on K for each compact K ⊆ U .
In 1915 S. Bernstein (see [BUB] and references therein) proved the fol-

lowing theorem:

Theorem 1 Fix a real number α > 0. Let f : RN → R be a function that
is Λα in each variable separately. That is, for each j = 1, . . . , N and for each
X = (x1, x2, . . . , xj−1, xj+1, . . . , xN−1, xN ), the function

fX : t 7−→ f(x1, x2, . . . , xj−1, t, xj+1, . . . , xN−1, xN)

is Λα. Further suppose that there is a constant C > 0 such that

‖fX‖Λα ≤ C (∗)

for every X, with C being independent of X. Then f ∈ Λα(RN).

Certainly it is known that, if the condition (∗) is omitted, then the conclusion
fails in general. A simple example is

f(x1, x2) =
x1x2

x2
1 + x2

2

.

This f is clearly C∞ in each variable separately, but it fails to be even
continuous at the origin. In general, a function that is C∞ in each variable
separately is at best in the first Baire class (see [KUR]). Variants of the
fundamental Theorem 1 are explored in [KRA1].

Let us say a few words about the proof of Theorem 1. Perhaps the most
classical proof uses basic Fourier analysis. Recall that the Dirichlet kernel
for Fourier series is

DN (t) =
N∑

j=−N

eijt =
sin(N + 1/2)t

sin(1/2)t

and the Fejér kernel (for Cesaro summability of Fourier series) is

KN (t) =
1

N + 1

N∑

n=0

Dn(t) =
1

N + 1

(
sin N+1

2
t

sin 1
2
t

)2

.
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Finally, the de la Vallee Poussin kernel for a Fourier series is

VN (t) = 2K2N+1(t)− KN (t) .

The book [KAT] is a good reference for this material. The chief virtue of
the de la Vallee mean MN ≡ f ∗ VN of a function f on the circle T is that
the Fourier coefficients M̂N (j) of MN agree with the Fourier coefficients f̂(j)
of f when |j| ≤ N , yet the Fourier coefficients of MN trail off to zero in a
linear fashion (which is useful for summability). A basic result (which may
be found in [ZYG]) is this:

Lemma 2 Let α > 0. Let f be an integrable function on the circle group
T. If

sup
T

|f − MNf | ≤ C · N−α .

Then f ∈ Λα(T). The converse is true as well.

This lemma is often formulated in terms of the “trigonometric polynomial
of best approximation” to f . It turns out that, for all practical purposes, the
de la Vallee mean gives that best approximation.

To prove Theorem 1, let f(x1, . . . , xN) be a function of N variables that
satisfies the hypotheses. Let M j

N(f) denote the de la Vallee Poussin mean of
f in the jth variable. Then one approximates f by M1

N (f) and then approx-
imates M1

N (f) by M2
N(M1

N (f)) and so forth up to the N -variable approxi-
mation MN

N (MN−1
N (· · · (M2

N(M1
N (f)) · · · )). The resulting approximation by

a trigonometric polynomial of N variables turns out to be sufficient to prove
a version of Lemma 2 in the N -variable setting. That is what we need.

It is also possible to prove this result using the calculus of finite differences.
To wit, it is easy to see from Lagrange’s form of the remainder term in
Taylor’s formula that, if 1 < α < 2 and f ∈ Λα(R) then, for x, h ∈ R,

f(x + h) = f(x) + h · f ′(x) + O(|h|α) . (∗)

Coupled with
f(x − h) = f(x) − h · f ′(x) + O(|h|α) ,

one sees that
f(x + h) + f(x − h) − 2f(x) = O(|h|α) .

Exploiting the expansion (∗) in both variables, and using some linear algebra,
one can prove a version of Theorem 1 for functions of two real variables. The
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result for more variables is similar but more tedious—see [KRA1] for the
details.

If one reformulates Bernstein’s theorem in the language of Sobolev spaces
then a particularly elegant attack on the problem comes to light. Suppose
that Hs(RN) denotes the usual Sobolev space—see [KRA6] or [HOR]. Now
we have:

Theorem 3 Let k > 0 be a positive integer. Let C > 0 be fixed. Let
f : RN → R be a function that satisfies the condition

‖fX‖Hk(R) ≤ C

for every choice of X = (x1, x2, . . . , xj−1, xj+1, . . . , xN−1, xN). Then f ∈
Hk(RN ).

Proof: The proof is simplicity itself, and we include it for its didactic value.
For convenience, multiply f by a C∞ cutoff function so that the result-

ing function (still called f) is supported in the unit cube. The hypothesis
guarantees that (

∂

∂xj

)`

f(x) ∈ L2 ,

with a uniform estimate in j, `, and the variable x, for j = 1, . . . , N and
0 ≤ ` ≤ k. But then Plancherel’s theorem tells us that

ξ`
j · f̂(ξ) ∈ L2(RN )

for j and ` as above (we use here Fubini’s theorem). But now elementary
estimates tell us that

m(ξ) · f̂ ∈ L2(RN )

for every monomial m of degree not exceeding k. That simply says that
f ∈ Hk(RN).

It is worth noting that, in the complex analysis of several variables, mat-
ters are different. For suppose that f(z1, z2, . . . , zn) is a function of several
complex variables defined on an open set U . It is a theorem of F. Hartogs (see
[KRA5]) that, if f is holomorphic in each variable separately, then f is jointly
holomorphic (in the sense, for instance, that it has a convergent, n-variable
power series expansion about each point). Note that, in Hartogs’s result, no
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uniform estimates are required in each variable. The joint holomorphicity is,
in effect, automatic.

On the other hand, Jan Boman [BOM1] has proved the following remark-
able result:

Theorem 4 Let f be a function on RN . Suppose that, for every smooth
curve γ : R → RN , it holds that f ◦ γ ∈ C∞(R). Then f ∈ C∞(RN).

Proof: We give here a new proof of this result—considerably simpler than
the one originally offered by Boman. It may be noted in what follows that
the curve γ can always be taken to be parametrized according to arc length,
so that |γ′(t)| ≡ 1. This is useful, for the leading term in |(f ◦ γ)(k)| is then
|∇kf | · |γ′|k, which has size |∇kf |.

The proof is by contradiction (as was Boman’s original proof). So sup-
pose, seeking a contradiction, that f is not C∞. Then there is some k such
that f is not Ck. That means that f will not satisfy the hypotheses of The-
orem 1 for α = k + 1. Focus now on a compact cube Q (the closure of an
open cube) on which this failure holds. So there will be an index j and a
sequence of points {p`} ⊆ Q so that |(∂k+1/∂xk+1

j )f(p`)| ≥ ` (this derivative
exists by the hypothesis). Invoking compactness, we may suppose that the
p` converge to a point p0 ∈ Q. But now it is easy to interpolate a C∞ curve γ
through the p` in sequence so that γ(t`) = p` and γ′(t`) is parallel to the unit
vector in the jth coordinate direction. We can also arrange that |γ′(t`)| = 1
for each `. Then f ◦ γ will fail the hypothesis of the theorem.

Boman’s theorem is particularly notable because it makes no hypothesis
about uniformity of estimates in the different directions. Yet one still is able
to conclude that the function f is genuinely C∞ as a function of several
variables.

One of the purposes of the present paper is to explore variants of Bo-
man’s theorem when the function space C∞ is replaced by some other space,
particularly by the space of real analytic functions.

Before we explore variants of Boman’s theorem, we take some time to
formulate and discuss some invariant versions of Theorem 1 that are useful
in analysis on manifolds and nilpotent Lie groups.
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1 Non-Commuting Vector Fields

A basic theorem in the paper [KRA2] is as follows.

Theorem 5 Let U ⊆ RN be a connected, open set (hereinafter called a
domain). Let X1, . . . , XN be smooth vector fields on U . Assume that, at
each point of U , the vectors X1(x), . . . , XN (x) form a basis of RN . Let
ϕx

j : t 7→ expx tXj denote the integral curve of the vector field Xj emanating
from the point x ∈ U (so that ϕx

j (0) = x). Let α > 0. Let C > 0 and assume
that, for each j and each x, the function

f ◦ ϕx
j

is Λα with ‖f ◦ ϕx
j ‖Λα ≤ C . Then f is locally in Λα on U .

This result is like an “invariant” form of the fundamental Theorem 1. For
it is not tied to the coordinate axes. It can be formulated in terms of flows
that arise from the problem at hand. The proof of this theorem uses the
finite differences approach that was outlined in the last section.

The next step in the development of these ideas was the result of [KRA3].
In that paper we proved the following:

Theorem 6 Let U ⊆ RN be a domain. Let X1, . . . , Xk, 1 ≤ k < N be
smooth vector fields on U . Assume that X1, . . . , Xk and the commutators
of these vector fields up to commutators of order m span RN at each point
of U . Let ϕx

j : t 7→ expx tXj denote the integral curve of the vector field Xj

emanating from the point x ∈ U (so that ϕx
j (0) = x). Let α > 0. Let C > 0

and assume that, for each j and each x, the function

f ◦ ϕx
j

is Λα with ‖f ◦ ϕx
j ‖ ≤ C . Then f is locally in Λα/m on U .

What is remarkable about this last result is that one need only assume
smoothness in a “small” set of directions—smaller than the number of di-
mensions. And then the contact structure automatically gives smoothness in
the remaining directions.

In fact more can be said in the conclusion of Theorem 6. Let V be a
vector field that is a pth order commutator of X1, . . . , Xk, p ≥ 2. Then, along
integral curves of V , the function f is locally Λα/p. The proof of this more
refined result is just the same as that of the theorem as enunciated. It is a
subtle finite-difference argument (see [KRA4]).

6



2 Harmonic Functions

Suppose that f is a given continuous function on the closure of a smoothly
bounded domain Ω in RN . If the restriction of f to ∂Ω is known to be
smooth, then what can be said about the smoothness of f on Ω? The answer,
of course, is nothing. The simple example on the unit ball given by

f(x) =

{
1 if x ∈ ∂B
(1 − |x|2)1/2 sin(1/[1 − |x|2]) if x ∈ B

exhibits a function that is real analytic on ∂B but is not Λε for any ε > 0 on
B.

The only hope of relating boundary smoothness to interior smoothness
is to have a partial differential equation that mediates between the two. A
sample result is this:

Theorem 7 Let f be a continuous function on the closure of a smoothly
bounded domain Ω ⊆ RN . Let X1, . . . , XN be smooth vector fields on ∂Ω
which are linearly independent at each point of the boundary. Let α > 0.
Assume that f is Λα along the integral curves of each of the Xj , with a
uniform bound C > 0 on the Lipschitz norms. Define u to be the solution of
the Dirichlet problem for the Laplacian on Ω with boundary data f . Then
u ∈ Λα(Ω).

In fact this theorem is true for the solution of the Dirichlet problem for
any strongly partial differential elliptic operator of order 2. These ideas are
developed in [KRA3].

3 Holomorphic Functions

The paper that taught us that something special is true for holomorphic
functions is [STE]. To formulate the fundamental result, we need a bit of
terminology. Let Ω ⊆ Cn be a smoothly bounded domain. If P ∈ ∂Ω then
let ν = νP be the outward unit normal vector at P . The one-dimensional
complex linear space Cν is called the complex normal space NP at P . The
Hermitian orthogonal complementary space TP is the complex tangent space

at P . Let U be a tubular neighborhood of ∂Ω. If z ∈ U , then let π(z) be
the well-defined Euclidean orthogonal projection of z to ∂Ω. Then we may
define Nz ≡ Nπ(z) and Tz ≡ Tπ(z).
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We call a curve γ : (0, 1) → U ∩ Ω complex tangential if γ′(t) ∈ Tγ(t) for
each t. The curve γ is normalized complex tangential of order k if ‖g(j)‖sup ≤
1 for derivatives of γ of order j, 1 ≤ j ≤ k.

Proposition 8 Let Ω be a smoothly bounded domain in Cn. Suppose that
f is holomorphic in Ω and that f ∈ Λα(Ω). Let α > 0. If γ is any normalized
complex tangential curve of order [α] + 1 (where square brackets [ ] denote
the greatest integer function) then f ◦ γ is Lipschitz of order 2α.

This result (see [KRA5, Ch. 8] for the proof) is remarkable for several
reasons. First, it gives free additional smoothness in certain geometrically
distinct directions. Second, it begs the question of “Why an improvement of
order 2?” We say just a word about the proof, and about this last question.
For simplicity, restrict α to 0 < α < 1/2. The key fact for this result is the
following two estimates. Let ν = νz represent a complex normal direction at
z ∈ Ω and τ = τz represent a complex tangential direction. Then

(1)

∣∣∣∣
∂

∂ν
f(z)

∣∣∣∣ ≤ C · δΩ(z)α−1 .

(2)

∣∣∣∣
∂

∂τ
f(z)

∣∣∣∣ ≤ C · δΩ(z)α−1/2 .

These estimates are established by a clever exploitation of the mean value
property on complex analytic discs pointing in the different directions.

The last result was studied and developed in a series of papers. Stein
enunciated the original result in [STE]. Krantz proved it in [KRA5]. Rudin
[RUD] pioneered the idea of hypothesizing smoothness just in the normal
direction. Krantz [KRA2] took that idea to its natural fruition. We state
that result in a moment. But first a little notation.

Let Ω be a smoothly bounded domain in Cn. Let U be a tubular neigh-
borhood of ∂Ω. For each P ∈ ∂Ω, let eP be the inward-extending normal
segment emanating from P and having length ε0. Here ε0 > 0 is chosen so
that, for each P , this segment will lie in the tubular neighborhood.

Theorem 9 Let Ω be a smoothly bounded domain in Cn. Let α > 0.
Let f be a holomorphic function on Ω. Assume that, for each P ∈ ∂Ω, the
restriction of f to eP is Λα, with the Lipschitz norm being uniformly bounded
in P . Then f ∈ Λα(Ω). Further, by Stein’s theorem, f is Λ2α in complex
tangential directions.
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The other key insight, which we mention briefly now, is that one can take
into account the Levi geometry of the domain Ω to sharpen the result. We
now recall the notion of finite type. For simplicity we restrict attention to
complex dimension 2. Let Ω be a smoothly bounded domain in C

2. We say
that P ∈ ∂Ω is a point of finite type m if there is a nonsingular complex
analytic disc that is tangent to ∂Ω at P to order m, but no such disc which
is tangent to order m + 1. A strongly pseudoconvex point is of finite type
2. The point (1, 0) in the boundary of E2p = {(z1, z2) : |z1|2 + |z2|2p < 1},
p a positive integer, is of finite type 2p. The idea of finite type was first
developed in [KOH] to measure subellipticity of the ∂-Neumann problem. It
has developed into an important geometric tool in several complex variables
(see [KRA5]). Now we have

Theorem 10 Let Ω be a smoothly bounded domain in Cn. Let α > 0.
Let f be a holomorphic function on Ω. Assume that, for each P ∈ ∂Ω, the
restriction of f to eP is Λα, with the Lipschitz norm being uniformly bounded
in P . Then f ∈ Λα(Ω). Further, let P ∈ ∂Ω be a point of finite type m.
Then, near P , f is Λmα in complex tangential directions.

4 New Results in the Vein of Boman

Our purpose in this section is to present some new results along the lines of
Jan Boman’s ideas in [BOM1]. We wish to have theorems in the Lipschitz
category, and also in the real analytic category.

Theorem 11 Let f be a function on an open set U ⊆ RN . Suppose that
0 < α < k ∈ N. Assume that, for every Ck curve γ : (−1, 1) → U , it holds
that f ◦ γ ∈ Λloc

α . Then f ∈ Λloc
α (U).

Proof: As in [BOM1], our proof will proceed by contradiction. First suppose
for simplicity that 0 < α < 1. Suppose that f satisfies the hypotheses, yet
f is not locally Lipschitz α on U . Then there is a compact set K ⊆ U and
points xj, xj + hj ∈ K so that

|f(xj + hj) − f(xj)|

|h|α
> j . (∗∗)

Invoking compactness, we may assume that xj → x0 ∈ K and xj + hj →
x0 + h0 ∈ K. But now it is a simple matter to interpolate a smooth curve η,
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in sequence, through the points x1, x1 +h1, x2, x2 +h2, . . . . According to our
hypothesis, f ◦ η is Lipschitz smooth on compact sets. Yet that contradicts
(∗∗).

For α > 1, we would need to invoke the contrapositive of Theorem 1 so
that (∗∗) obtains in one particular coordinate direction (and also we would
have to use a higher-order finite difference in (∗∗)). The rest of the proof
would go through as above.

Our next result is about real analytic functions. The following classical
characterization of these objects (see [KRP]) will prove useful:

Proposition 12 Let f be a function on a domain U ⊆ RN . Suppose that
there are constants C > 0, r > 0 such that, for each k = 0, 1, . . . and each
multi-index β with |β| ≤ k, it hold for x ∈ U that

∣∣∣∣
∂βf

∂xβ
(x)

∣∣∣∣ ≤ C ·
k!

rk
.

Then f is real analytic on U .

Now a classical result of F. Browder (see [BRO], [KRP]) says this:

Theorem 13 Let f be a function on an open cube C ≡ (−a, a)× (−a, a)×
· · ·×(−a, a) ⊆ R

N . Assume that there is an r > 0 such that, for j = 1, . . . , N
and k = 0, 1, 2, . . . , we have

∣∣∣∣
dkf(x1, x2, . . . , xj−1, x, xj+1, . . . , xN)

dxk

∣∣∣∣ ≤ C ·
k!

rk
.

Then f is jointly real analytic on C.

Theorem 14 Let f be a function on an open set U ⊆ RN . Assume that, for
every real analytic curve γ : (−1, 1) → U , it holds that f ◦ γ is real analytic.
Then f is real analytic on U .

Proof: Seeking a contradiction now, let us suppose that our f is not real
analytic on U . Therefore the hypotheses of Browder’s theorem will fail for
f . Thus, for any r > 0, there will be a sequence of points xj ∈ U and indices
kj → +∞ and mj ∈ {1, 2, . . . , N − 1} such that

∣∣∣∣
djf

dxj
(xj

1, x
j
2, . . . , x

j
mj−1, x, xj

mj+1, . . . , x
j
N)

∣∣∣∣ > j ·
j!

rj
.
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Although the proof may now be completed in the real variable category,
it is in fact more expeditious to pass to the complex analytic category (so
that we may invoke Mittag-Leffler’s theorem). What we need to do, in order
to obtain the necessary contradiction, is to interpolate a real analytic curve
γ : (−1, 1) → U through the points x1, x2, · · · ∈ U in such a way that γ at
the point xj agrees with the curve

t 7→ (x1
1, x

j
2, . . . , x

j
mj−1, x

j
mj

+ t, xj
mj+1, . . . , x

j
N−1, x

j
N)

to order j + 1. Complexifying γ to a holomorphic function Γ on an open set
W ⊆ C that contains the interval (−1, 1), we are asking for a holomorphic
function on W with specification of a particular Taylor jet at each of the
points xj. Of course Mittag-Leffler’s theorem (see [GRK]) guarantees that
this can be done. So the holomorphic function Γ exists. The restriction of
Γ to the real interval (−1, 1) ⊆ R gives us the real analytic curve γ that we
seek. And f ◦ γ gives the desired contradiction. The proof of the theorem is
complete.

5 Concluding Remarks

Theorems of the kind discussed here have a long history. They have ap-
plications in real analysis, partial differential equations, and, most recently,
in dynamical systems. Boman [BOM2] has also explored theorems of this
nature with different hypotheses on the range of the function in question.
There are still further avenues of inquiry left open.
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