Solutions to Crowdmark HW 6
pp. 285-287

12) \(y(0) = 0, y\left(\frac{\pi}{2}\right) = 0 \)
 \(y'' + \lambda y = 0 \)
 \[y = A \cos \sqrt{\lambda} x + B \sin \sqrt{\lambda} x \]
 \[0 = y(0) = A \text{, so } y = B \sin \sqrt{\lambda} x \]
 \[0 = y\left(\frac{\pi}{2}\right) = B \sin \left(\frac{\sqrt{\lambda}}{2}\right) \]
 \(\sqrt{\lambda} \) is an even integer, \(\sqrt{\lambda} = 2m \) for \(m = 1, 2, \ldots \)
 The eigenvalues are \(\lambda_m^2 = 4m^2 \)
 The eigenfunctions are \(\sin 2mx \).

\[c) \quad y'' + \lambda y = 0 \]
\[y(0) = 0, \quad y(1) = 0 \]
\[y = A \cos \sqrt{\lambda} x + B \sin \sqrt{\lambda} x \]
\[0 = y(0) = A \text{, so } y = B \sin \sqrt{\lambda} x \]
\[0 = y(1) = \sin \sqrt{\lambda} \text{ so } \sqrt{\lambda} = n\pi, \quad n = 1, 2, \ldots \]
 The eigenvalues are \(\lambda_n^2 = n^2 \pi^2 \).
 The eigenfunctions are \(\sin n\pi x \).

\[f) \quad y'' + \lambda y = 0 \]
\[y(2) = 0, \quad y(6) = 0 \]
\[y = A \cos \sqrt{\lambda} x + B \sin \sqrt{\lambda} x \]

\[O = y (a) = A \cos (\sqrt{\lambda} a) + B \sin (\sqrt{\lambda} a) \]
\[O = y (b) = A \cos (\sqrt{\lambda} b) + B \sin (\sqrt{\lambda} b) \]

\[O = A \cos (\sqrt{\lambda} a) \cos (\sqrt{\lambda} b) + B \sin (\sqrt{\lambda} a) \cos (\sqrt{\lambda} b) \]
\[O = A \cos (\sqrt{\lambda} a) \cos (\sqrt{\lambda} b) + B \sin (\sqrt{\lambda} b) \cos (\sqrt{\lambda} a) \]
\[O = B \sin (\sqrt{\lambda} b) \cos (\sqrt{\lambda} a) - B \sin (\sqrt{\lambda} a) \cos (\sqrt{\lambda} b) \]
\[\sin (\sqrt{\lambda} a) \cos (\sqrt{\lambda} b) = \sin (\sqrt{\lambda} b) \cos (\sqrt{\lambda} a) \]
\[\tan (\sqrt{\lambda} a) = \tan (\sqrt{\lambda} b) \]

Thus \[\sqrt{\lambda} b - \sqrt{\lambda} a = n \pi \] for \(n = 1, 2, \ldots \)

\[\sqrt{\lambda} (b-a) = n \pi \]
\[\sqrt{\lambda} = \frac{n \pi}{b-a} \]

\[\lambda = \frac{n^2 \pi^2}{(b-a)^2} \]

So eigenvalues are \(\frac{n^2 \pi^2}{(b-a)^2} \)

Eigenvectors are \(A \cos \frac{n \pi}{b-a} x + B \sin \frac{n \pi}{b-a} x \).
2. \(\frac{\partial^2 y}{\partial x^2} = F''(x+zt) + G''(x-zt) \)

\(\frac{\partial^2 y}{\partial t^2} = 4 \frac{\partial^2 y}{\partial (x+zt)^2} + 4 \frac{\partial^2 y}{\partial (x-zt)^2} \).

So \(\frac{\partial^2 y}{\partial t^2} = 4 \frac{\partial^2 y}{\partial x^2} \). This is the wave equation.

b) \(\alpha = x + \alpha t \), \(\beta = x - \alpha t \)

\(\frac{\partial^2 y}{\partial \alpha \partial \beta} = ? \)

\(\frac{\partial}{\partial x} = \frac{\partial}{\partial \alpha} + \alpha \frac{\partial}{\partial \beta} = \frac{\partial}{\partial \alpha} + \frac{1}{\alpha} \frac{\partial}{\partial \beta} \)

\(\frac{\partial}{\partial \beta} = \frac{\partial}{\partial \alpha} - \frac{1}{\alpha} \frac{\partial}{\partial \beta} \)

\(\frac{\partial^2}{\partial \alpha^2} = \frac{1}{\alpha} \left(\frac{\partial^2}{\partial \alpha^2} + \frac{\partial^2}{\partial \beta^2} \right) \)

\(\frac{\partial^2}{\partial \beta^2} = \frac{\alpha^2}{\alpha^2} \left(\frac{\partial^2}{\partial \alpha^2} + \frac{\partial^2}{\partial \beta^2} \right) \)

\(\frac{\partial^2}{\partial t^2} = \alpha^2 \left(\frac{\partial^2}{\partial \alpha^2} + \frac{\partial^2}{\partial \beta^2} \right) \)

So \(0 = \left(4 \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial t^2} \right) \).
1. \[w(x,t) = \sum b_j e^{-j^2 t} \sin jx + \left[w_1 + \frac{1}{\pi} (w_2 - w_1) x\right] \]

4. The new boundary conditions are:
 \[\frac{\partial w}{\partial x}(0, t) = 0 \quad \forall t \]
 \[\frac{\partial w}{\partial x}(\pi, t) = 0 \quad \forall t, \]

Now the temperature
 \[w(x,t) = 100^\circ. \]

5. Now it is
 \[w(x,t) = \text{average of } f \]
 \[= \frac{1}{\pi} \int_0^\pi f(x) \, dx. \]

pg. 300 - 301

1a) \[f(\Theta) = \cos \frac{\Theta}{2}, -\pi \leq \Theta \leq \pi \]

\[2j^2 = \frac{4}{\pi^2} \int_0^\pi \cos \frac{\Theta}{2} \cos j\Theta \, d\Theta = \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 2\Theta \cos 2j\Theta \, d\Theta \]

\[= \frac{2}{\pi} \left(\cos(2j + 1)\pi - \cos(2j - 1)\pi \right) \frac{\pi}{2} \]

\[= \frac{1}{\pi} \left[\sin(2j + 1)\pi - \sin(2j - 1)\pi \right] \frac{\pi}{2} \]

\[= \frac{1}{\pi} \left[\frac{\sin(2j + 1)\pi}{2j + 1} - \frac{\sin(2j - 1)\pi}{2j - 1} \right] \frac{\pi}{2} \]
\[= \frac{1}{\pi} \left[\frac{(\sin(j\pi - \frac{\pi}{2}) - \sin(j\pi + \frac{\pi}{2}))}{2j - 1} \right.\]
\[\left. - \frac{(\sin(-j\pi + \frac{\pi}{2}) - \sin(-j\pi - \frac{\pi}{2}))}{2j + 1} \right] \]
\[= \frac{1}{\pi} \left[\frac{2\sin(j\pi - \frac{\pi}{2}) - 2\sin(j\pi + \frac{\pi}{2})}{2j - 1} \right.\]
\[\left. - \frac{2\sin(-j\pi + \frac{\pi}{2}) - 2\sin(-j\pi - \frac{\pi}{2})}{2j + 1} \right].\]

In case \(j \) is even, \(j = 2m \), then
\[x_j = \frac{2}{\pi} \left[\frac{-1}{2j - 1} - \frac{1}{2j + 1} \right].\]
\[= \frac{2}{\pi} \left[\frac{y_j^2 - 2}{4y_j^2 - 1} \right] = \frac{2}{\pi} \left[\frac{y_j^2 - 2}{4y_j^2 - 1} \right].\]

In case \(j \) is odd, \(j = 2m - 1 \), then
\[x_j = \frac{2}{\pi} \left[\frac{1}{2j - 1} - \frac{-1}{2j + 1} \right].\]
\[= \frac{2}{\pi} \left[\frac{y_j^2 - 2}{4y_j^2 - 1} \right] = \frac{2}{\pi} \left[\frac{y_j^2 - 2}{4y_j^2 - 1} \right].\]

\[b_j = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos \theta \sin j \theta \, d\theta = \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} \cos \theta \sin 2j \theta \, d\theta \]
\[= \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} \sin (2j+1) \theta + \sin (2j-1) \theta \, d\theta \]
\[= \frac{1}{\pi} \left[\frac{-\cos (2j+1) \theta}{2j+1} - \frac{-\cos (2j-1) \theta}{2j-1} \right]_{-\pi/2}^{\pi/2} \]
\[= \frac{1}{\pi} \left[\frac{-\cos (2j+1) \pi}{2j+1} - \frac{-\cos (2j-1) \pi}{2j-1} \right.\]
\[\left. - \frac{\cos (2j+1) (-\pi/2)}{2j+1} - \frac{\cos (2j-1) (-\pi/2)}{2j-1} \right] \]
\[= \frac{1}{\pi} \left[\frac{-2\cos (2j+1) \pi}{2j+1} - \frac{-2\cos (2j-1) \pi}{2j-1} \right.\]
\[\left. - \frac{-2\cos (2j+1) (-\pi/2)}{2j+1} - \frac{-2\cos (2j-1) (-\pi/2)}{2j-1} \right].\]
In case \(j = 2m \) is even, \(b_j = \frac{2}{\pi} \left[\frac{0}{2j+1} + \frac{0}{2j-1} \right] = 0 \).

In case \(j = 2m-1 \) is odd, \(b_j = \frac{2}{\pi} \left[\frac{0}{2j+1} + \frac{0}{2j-1} \right] = 0 \).

So the Fourier series has only \(c_j \)'s in it.

The solution of the Dirichlet problem is (note \(a_0 = 0 \)).

\[
 w(r, \Theta) = \sum_{m=1}^{\infty} \frac{2m-1}{\pi (16m^2-1)} \cos 2m \Theta
 + \sum_{m=2}^{\infty} \frac{8(2m-1)}{\pi (4(2m-1)^2-1)} \cos ((2m-1) \Theta).
\]

c) \(f(\Theta) = \begin{cases} 0, & -\pi \leq \Theta < 0 \\ \sin \Theta, & 0 \leq \Theta \leq \pi \end{cases} \)

\[
 j \geq 2 \quad a_j = \frac{1}{\pi} \int_{0}^{\pi} \sin \Theta \cos j \Theta \, d\Theta = \frac{1}{\pi} \int_{0}^{\pi} \frac{\sin(1+j)\Theta + \sin(1-j)\Theta}{2} \, d\Theta
 = \frac{1}{2\pi} \left[\frac{-\cos(1+j)\Theta}{1+j} - \frac{-\cos(1-j)\Theta}{1-j} \right]_{0}^{\pi}
 = \frac{1}{2\pi} \left[\frac{-(-1)^{j+1}}{1+j} - \frac{(-1)^{j-1}}{1-j} \right] - \left(\frac{-1}{1+j} - \frac{1}{1-j} \right)
 = \frac{1}{2\pi} \left[\frac{(-1)^{j+1} - (-1)^{j-1}}{1-j^2} + \frac{2}{1-j^2} \right]
 = \frac{1}{\pi}\left(1 - \frac{2}{1-j^2}\right) \cdot \left[(-1)^{j+1} + 1 \right]
 \]

If \(j = 2m \) is even, then \(a_j = \frac{2}{\pi (1-j^2)} \).

If \(j = (2m-1) \) is odd, then \(a_j = 0 \).

\[
 b_0 = \frac{1}{\pi} \int_{0}^{\pi} \sin \Theta \, d\Theta = \frac{1}{\pi} \left[-\cos \Theta \right]_{0}^{\pi} = \frac{1}{\pi} \left[2 \right] = \frac{2}{\pi}.
\]
\[j \geq 2 \quad b_j = \frac{1}{\pi j} \int_0^{\pi} \sin \theta \sin j \theta \cos \frac{\pi}{j} \theta - \cos \frac{\pi}{j+1} \theta \, d\theta \]
\[= \frac{1}{2\pi j} \left[\frac{\sin \left(\frac{\pi}{j} \theta \right)}{j-1} - \sin \left(\frac{\pi}{j+1} \theta \right) \right]_0^\pi \]
\[= \frac{1}{2\pi j} \left[\left(\frac{0}{j-1} - \frac{0}{j+1} \right) - \left(\frac{0}{j-1} - \frac{0}{j+1} \right) \right] = 0 \]
\[j = 1 \quad b_1 = \frac{1}{\pi} \int_0^{\pi} \sin \theta \cos \theta \, d\theta = \frac{1}{\pi} \int_0^{\pi} \frac{1 - \cos 2\theta}{2} \, d\theta \]
\[= \frac{1}{2} - \frac{\sin 2\theta}{4} \bigg|_0^\pi = (\frac{\pi}{2} - 0) - (0 - 0) = \frac{\pi}{2} \]

So, the solution of the Dirichlet problem is
\[\sum_{m=1}^\infty \frac{2}{\pi (1 - 4m^2)^{\frac{3}{2}}} \cos 2m \theta + \frac{\pi}{2} \sin \theta. \]

d) \(\Phi(\theta) = \left\{ \begin{array}{ll} 0 & \text{if } -\pi \leq \theta < 0 \\ 1 & \text{if } 0 \leq \theta \leq \pi \end{array} \right. \)

\[j \geq 1 \quad a_j = \frac{1}{\pi} \int_0^{\pi} \cos j \theta \, d\theta = \frac{1}{\pi} \left[\sin j \theta \right]_0^\pi = 0 \]
\[a_0 = \frac{1}{\pi} \int_0^{\pi} \, d\theta = 1 \]
\[b_j = \frac{1}{\pi} \int_0^{\pi} \sin j \theta \, d\theta = \frac{1}{\pi} \left[-\cos j \theta \right]_0^\pi \]
\[= \frac{1}{\pi j} \left[(-1)^{j+1} \right] \]

So, the solution of the Dirichlet problem is
\[\frac{1}{2} + \sum_{j=1}^\infty \frac{(-1)^{j-1}}{\pi j} \left[(-1)^{j+1} \right] \sin j \theta. \]
2. If \((r, \theta) = z\) be the variable in the unit disc, let \((r', \theta') = \hat{z}\) be the variable in \(D(0, R)\). Then \(\hat{z} = Rz\).

Let \(f(\theta)\) be the Dirichlet boundary data on \(\partial D(0, R)\).

Let \(w = \sum r^j (a_j \cos j\theta + b_j \sin j\theta)\) be the solution of the Dirichlet problem on \(D(0, 1)\) with boundary data \(f\).

Then \(\hat{w} = \sum \frac{r'^j}{r^j} (a_j \cos j\theta + b_j \sin j\theta)\) is a harmonic function on \(D(0, R)\) that has \(f\) as boundary function.

A similar change of variable gives the Poisson integral formula on \(D(0, R)\).

4. Done in class.
1. Now
\[m(x) P(x) y'' + m(x) Q(x) y' + u(x) R(x) y = 0 \]
\[= \left[m(x) P(x) y' \right]' + \left[S(x) y \right]' \]
\[\therefore (m(x) P(x) - m(x) P(x)) y'' + (m(x) Q(x) - m(x) P(x)') y' \]
\[+ (m(x) R(x) - S(x)) y = 0 \]
\[\therefore m(x) P(x) = m(x) P(x) \]
\[m(x) Q(x) = (m(x) P(x))' + S(x) \]
\[m(x) R(x) = S' (x) \]

Thus
\[(m(x) P(x) y'' - (m(x) Q(x))' + m(x) R(x) y = 0 \]

So
\[p(x) u''(x) + m'(x) (2 p(x)' - Q(x) + u(x) (P''(x) + R(x)) \]
\[- Q'(x)) = 0 \]

(a) \(p = 1 - x^2 \), \(Q = -2x \), \(R = p (p + 1) \)
adjoint equation \(v \)
\[(1 - x^2) u'' + (-2x) u' + (p (p + 1)) u = 0 \]
(b) \(p = x \), \(Q = x \), \(R = x^2 - p^2 \)
adjoint equation \(\tilde{v} \)
\[x^2 \tilde{v}'' + 3x \tilde{v}' + [1 + x^2 - p^2] \tilde{v} = 0 \]
(c) \(P = 1, \ Q = -2x, \ R = 2y \)

Adjoint equation is

\[u'' + 2xu' + (2+2p)u = 0 \]

(d) \(P = x, \ Q = 1-x, \ R = p \)

Adjoint equation is

\[xu'' + (1+x)u' + (1+p)u = 0, \]

2. Take \(n = 1 \) and \(u(x) = 1 \). The Euler equation can be written as

\[(x^2 y')' + (-xy)' = 0 \]

Integration gives

\[x^2 y' - xy = C \]

\[y' - \frac{1}{x} y = \frac{C}{x^2} \]

\[\frac{1}{x} y' - \frac{1}{x^2} y = \frac{C}{x^3} \]

\[(\frac{1}{x} y)' = \frac{C}{x^3} \]

\[\int (\frac{1}{x} y)' \, dx = \int \frac{C}{x^3} \, dx \]

\[\frac{1}{x} y = -\frac{C}{2x^2} + D \]

\[y = -\frac{C}{2x} + Dx \]