PRACTICE FINAL EXAM

(12 points) 1. Let \mathcal{P}_{5} be the collection of all polynomials of degree not exceeding 5 . Explain why this is a vector space.
(14 points)
2. Give an explicit description of the null space of the matrix

$$
A=\left[\begin{array}{lll}
2 & 4 & 6 \\
2 & 1 & 3 \\
0 & 3 & 3
\end{array}\right]
$$

3. Consider the vector space

$$
\operatorname{Span}\left\{\mathbf{v}_{1} \mathbf{v}_{2}, \mathbf{v}_{3}\right\}
$$

where

$$
\begin{gathered}
\mathbf{v}_{1}=\langle 2,1,4\rangle \\
\mathbf{v}_{2}=\langle 1,3,3\rangle \\
\mathbf{v}_{3}=\langle 1,-2,1\rangle
\end{gathered}
$$

What is the dimension of this space?
(14 points) 4. Find a basis for the column space of

$$
B=\left[\begin{array}{ccc}
0 & -2 & 4 \\
1 & 1 & 1 \\
6 & 0 & 0
\end{array}\right]
$$

(14 points)
5. Let

$$
\begin{aligned}
& \mathbf{b}_{1}=\langle 2,0,3\rangle, \\
& \mathbf{b}_{2}=\langle 3,0,2\rangle, \\
& \mathbf{b}_{3}=\langle 0,4,0\rangle .
\end{aligned}
$$

Write $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$. What are the coordinates of the vector $\langle 2,1,2\rangle$ with respect to \mathcal{B} ?
(14 points) 6. Find all eigenvalues and eigenvectors of the matrix

$$
\left[\begin{array}{ll}
2 & 4 \\
4 & 2
\end{array}\right]
$$

(14 points) 7. Use any method to diagonalize the matrix

$$
\left[\begin{array}{ll}
2 & 4 \\
4 & 2
\end{array}\right]
$$

(14 points) 8. What is the characteristic polynomial of the matrix

$$
\left[\begin{array}{ccc}
4 & 0 & 2 \\
-2 & 2 & 0 \\
3 & 0 & 1
\end{array}\right] ?
$$

(14 points) 9. What is the cosine of the angle between the vector $\langle 2,1,3\rangle$ and the $\langle 1,2,4\rangle$?
(12 points) 10. What is the projection of the vector $\mathbf{y}=\langle 3,1,2\rangle$ into the vector $\mathbf{u}=$ $\langle 1,1,3\rangle$?
(12 points) 11. What is the distance of the point $(2,1,2)$ from the 2-dimensional subspace

$$
W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}
$$

with

$$
\mathbf{u}_{1}=\langle 3,0,2\rangle \quad \mathbf{u}_{2}=\langle 2,0,3\rangle ?
$$

(12 points) 12. Are any of the vectors $\langle 2,1,6\rangle,\langle-3,0,1\rangle$, and $\langle 1,0,3\rangle$ perpendicular to any of the others?
(14 points) 13. What is a basis for the subspace of \mathbf{R}^{3} spanned by $\langle 2,1,3\rangle,\langle 2,4,1\rangle$, and $\langle 0,-3,2\rangle$?
14. Use the Gram-Schmidt orthogonalization method to produce an orthogonal basis for the subspace of \mathbf{R}^{3} spanned by $\langle 1,4,2\rangle$ and $\langle 6,3,2\rangle$.
(12 points) 15. Produce a vector of length 1 that is orthogonal to the vector $\langle 1,3,4\rangle$ in the space \mathbf{R}^{3}.

