Math 309 Spring, 2023
Krantz

PRACTICE FINAL EXAM

(12 points) 1. Let P5 be the collection of all polynomials of degree not exceeding 5.
Explain why this is a vector space.

(14 points) 2. Give an explicit description of the null space of the matrix
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(14 points) 3. Consider the vector space

Span{vivy, v3}

where
V] = <27 174> )
Vo = <17373> 9
vy = (1,-2,1).

What is the dimension of this space?

(14 points) 4. Find a basis for the column space of
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6 0 O
(14 points) 5. Let
b, = (2,0,3),
by = (3,0,2),
b3 = (0,4,0) .
Write B = {by, by, b3}. What are the coordinates of the vector (2,1, 2)
with respect to B?
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. Find all eigenvalues and eigenvectors of the matrix

tH

Use any method to diagonalize the matrix

tH

. What is the characteristic polynomial of the matrix
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. What is the cosine of the angle between the vector (2,1,3) and the

(1,2,4)7

. What is the projection of the vector y = (3,1,2) into the vector u =

(1,1,3)?

What is the distance of the point (2,1,2) from the 2-dimensional sub-
space
W = Span{u;, us}
with
u = (3,0,2) uy=(2,0,3)7

Are any of the vectors (2, 1,6), (—3,0,1), and (1,0, 3) perpendicular to
any of the others?

What is a basis for the subspace of R? spanned by (2,1,3), (2,4,1),
and (0, —3,2)?

Use the Gram-Schmidt orthogonalization method to produce an or-
thogonal basis for the subspace of R? spanned by (1,4,2) and (6,3, 2).

Produce a vector of length 1 that is orthogonal to the vector (1,3,4)
in the space R3.



