FIRST PRACTICE MIDTERM EXAM

(12 points) 1. Use an augmented matrix to solve this system of linear equations.

$$
\begin{array}{r}
x_{1}-3 x_{2}=5 \\
-x_{1}+x_{2}+5 x_{3}=2 \\
x_{2}+x_{3}=0
\end{array}
$$

(12 points) 2. Find the general solution of the system whose augmented matrix is give here.

$$
\left[\begin{array}{ccc|c}
3 & -4 & 2 & 0 \\
-9 & 12 & -6 & 0 \\
-6 & 8 & -4 & 0
\end{array}\right]
$$

(12 points) 3. Determine whether \mathbf{b} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}.

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
5 \\
5
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
0 \\
8
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
-5 \\
11 \\
-7
\end{array}\right]
$$

(12 points) 4. Given A and \mathbf{b}, write the augmented matrix for the linear system that corresponds to the matrix equation $A \mathbf{x}=\mathbf{b}$. Then solve the system and write the solution as a vector.

$$
A=\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 5 \\
-2 & -4 & -3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
-2 \\
2 \\
9
\end{array}\right]
$$

(14 points) 5. Write the solution of the given homogeneous system in paremetric vector form (using λ, μ, etc.).

$$
\begin{array}{r}
x_{1}+3 x_{2}+x_{3}=0 \\
-4 x_{1}-9 x_{2}+2 x_{3}=0 \\
-3 x_{2}-6 x_{3}=0
\end{array}
$$

(14 points) 6. Determine whether the columns of this matrix form a linearly independent set.

$$
\left[\begin{array}{ccc}
0 & -8 & 5 \\
3 & -7 & 4 \\
-1 & 5 & -4 \\
1 & -3 & 2
\end{array}\right]
$$

(12 points) 7. Given the matrix A, define the linear mapping T by $T \mathbf{x}=A \mathbf{x}$. Find a vector \mathbf{x} whose image under T is \mathbf{b}. Say whether or not \mathbf{x} is unique.

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
-2 & 1 & 6 \\
3 & -2 & -5
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
-1 \\
7 \\
-3
\end{array}\right]
$$

(12 points) 8. The map T from \mathbf{R}^{2} to \mathbf{R}^{4} satisfies $T\left(\mathbf{e}_{1}\right)=(2,1,2,1), T\left(\mathbf{e}_{2}\right)=$ $(-5,2,0,0)$. [Here $\mathbf{e}_{1}, \mathbf{e}_{2}$ are the columns of the 2×2 identity matrix.] Find the standard matrix of T.

