1. Let $0 < \epsilon < \frac{1}{3}$. Imagine constructing a Cantor-like set by first removing an open interval of length ϵ, then removing two open intervals of length ϵ^2, then removing four open intervals of length ϵ^3, etc. At the jth step, we remove 2^{j-1} open intervals of length ϵ^j.

The sum of the lengths of all the removed intervals (that is, the length of the complement of the Cantor set) is

$$\sum_{j=1}^{\infty} 2^{j-1} \epsilon^j = \sum_{j=0}^{\infty} 2^j \epsilon^{j+1} = \epsilon \sum_{j=0}^{\infty} (2\epsilon)^j = \frac{\epsilon}{1-2\epsilon}.$$

We will have $\frac{\epsilon}{1-2\epsilon} = \frac{\pi}{2}$ precisely when

$$\epsilon = \frac{\pi}{2} - 2\epsilon \pi$$

$$\epsilon \left(1 + 2\pi \right)^2 = \frac{\pi}{2}$$

$$\epsilon = \frac{\pi}{1 + 2\pi}.$$

2. Choose j so large that $3^{-j} < \frac{1}{2} |x_1 - x_2|$. Then the intervals that we remove at the jth step are shorter than $\frac{1}{2} |x_1 - x_2|$. So there will be no element of the complement of the Cantor set between x_1 and x_2.

5. Let x be an element of the interior S' of S. Then there is an $\varepsilon > 0$ so that $(x-\varepsilon, x+\varepsilon) \subseteq S'$. Now if $t \in (x-\varepsilon, x+\varepsilon)$, let $s = \min \{ |t-(x-\varepsilon)|, |t-(x+\varepsilon)| \}$. Then $(t-s, t+s) \subset (x-\varepsilon, x+\varepsilon) \subseteq S$, so $t \in S'$. Hence S' is open.

6. Denote the boundary of S by ∂S. If $x \notin \partial S$ then there is an $\varepsilon > 0$ so that either $(x-\varepsilon, x+\varepsilon) \cap S = \emptyset$ or $(x-\varepsilon, x+\varepsilon) \cap S = \emptyset$. But then $(x-\varepsilon, x+\varepsilon) \subseteq \partial S$, so ∂S is open. Hence ∂S is closed.

9. If $q \in \emptyset$ and $\varepsilon > 0$ then $(q-\varepsilon, q+\varepsilon)$ will contain infinitely many rationals. So \emptyset is not discrete. If $x \in C$, the Cantor set, then x has an "address" which is a sequence of 0s and 1s. We may change the value of one of those digits arbitrarily far out in the address. That will produce an element of C distinct from x but arbitrarily close.
So \(C \) is not discrete.
If \(n \in \mathbb{Z} \), then \((n - \frac{1}{2}, n + \frac{1}{2}) \cap \mathbb{Z} = \{n\}\).
So \(\mathbb{Z} \) is discrete.

If
\[
\frac{1}{j} \in T,
\]
then \((\frac{1}{j - \frac{1}{(j+1)^2}}, \frac{1}{j + \frac{1}{(j+1)^2}}) \cap T = \{\frac{1}{j}\}\).
So \(T \) is discrete.

12. Let \(x \in \mathbb{R} \) and \(\varepsilon > 0 \). If \(x \) is irrational then choose \(k \) so large that \(\frac{1}{2^k} < \varepsilon \). Then \(x' = x + \frac{1}{2^k} \) is irrational and \((x - \varepsilon, x + \varepsilon)\) contains \(x' \).

If \(x \) is rational then choose \(k \) so large that \(\frac{\sqrt{2}}{2^k} < \varepsilon \). Then \(x' = x + \frac{\sqrt{2}}{2^k} \) is irrational and \((x - \varepsilon, x + \varepsilon)\) contains \(x' \).

Let \(\{\varrho_j\} \) be an enumeration of the rationals. Then this is a sequence that is dense in \(\mathbb{R} \).

16. Define a relation on \(\mathbb{U} \) by \(x \sim y \) if all points between \(x \) and \(y \) lie in \(\mathbb{U} \).
This is an equivalence relation. The set U is the disjoint union of the equivalence classes, and each equivalence class is an open interval.

19. If $\{x_j\}$ is a enumeration of the rationals, then $\mathbb{R} = \mathbb{Q}$, so $\mathbb{R} \setminus \{x_j\}$ is the irrationals, which is uncountable.

If $\{x_j\}$ is the integers, then $\mathbb{Z} = \mathbb{Z}$ and $\mathbb{R} \setminus \{x_j\}$ is empty.

If $\{x_j\} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$, then $\mathbb{R} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\} \cup \{0\}$, so $\mathbb{R} \setminus \{x_j\} = \{0\}$, a single point.

If $\{x_j\} = \{1, 2, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$, then $\mathbb{R} = \{1, 2, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\} \cup \{0, 2\}$, so $\mathbb{R} \setminus \{x_j\} = \{0, 2\}$ with two elements.

In a similar fashion we can arrange for $\mathbb{R} \setminus \{x_j\}$ to be a finite set of any size or a countable set.
22. Let \(x \in \mathbb{O} \), so \(x \in \mathbb{O}_j \) for some \(j \). Hence, there is a \(\varepsilon > 0 \) so that \((x - \varepsilon, x + \varepsilon) \subset \mathbb{O}_j \subset \mathbb{O} \). So \(\mathbb{O} \) is open.

Let \(\mathbb{O}_j = (-\frac{1}{j}, 1 + \frac{1}{j}) \). Then
\[
\mathbb{O} = \bigcap_{j=2}^{\infty} \mathbb{O}_j = [0, 1] \text{ which is not open}
\]

Let \(E_j = [\frac{1}{j}, 1 - \frac{1}{j}] \). Then \(\bigcup_{j=2}^{\infty} E_j = (0, 1) \)
which is not closed.

If \(x \in \mathbb{O}_j \), then \(x \in E_j \) for some \(j \).
Since \(E_j \) is open, \(\varepsilon > 0 \) s.t. \((x - \varepsilon, x + \varepsilon) \subset E_j \).
Hence \((x - \varepsilon, x + \varepsilon) \subset \mathbb{O} \). So \(\mathbb{O} \) is open, and \(\mathbb{O} \) is closed.

26. We know that \(\mathbb{O} \) is the disjoint union of open intervals \((a_j, b_j) \). Each such interval is the increasing union of closed intervals
\[
I_j^k = [a_j + \frac{k}{j}, b_j - \frac{k}{j}] \text{. Let}
\]
\[
E_k = \bigcup_{j=2}^{\infty} I_j^k
\]
Then $E_1 \subset E_2 \subset \ldots$ and $\cup E_k = \emptyset$
and each E_k is closed,