Figure: This is your instructor.
We often obtain information about a new sequence by comparison with a sequence that we already know. Thus it is well to have a catalogue of fundamental sequences which provide a basis for comparison.

Example

Fix a real number a. The sequence $\{a^j\}$ is called a *power sequence*. If $-1 < a < 1$ then the sequence converges to 0. If $a = 1$ then the sequence is a constant sequence and converges to 1. If $a > 1$ then the sequence diverges to $+\infty$. Finally, if $a \leq -1$ then the sequence diverges.
Recall that, in the first lecture, we discussed the existence of nth roots of positive real numbers. If $\alpha > 0$, $m \in \mathbb{Z}$, and $n \in \mathbb{N}$ then we may define

$$\alpha^{m/n} = (\alpha^m)^{1/n}.$$

Thus we may talk about rational powers of a positive number. Next, if $\beta \in \mathbb{R}$ then we may define

$$\alpha^\beta = \sup\{\alpha^q : q \in \mathbb{Q}, q < \beta\}.$$

Thus we can define any real power of a positive real number. The exercises ask you to verify several basic properties of these exponentials.
Lemma

If $\alpha > 1$ is a real number and $\beta > 0$ then $\alpha^\beta > 1$.

Proof: Let q be a positive rational number which is less than β. Suppose that $q = m/n$, with m, n integers. It is obvious that $\alpha^m > 1$ and hence that $(\alpha^m)^{1/n} > 1$. Since α^β majorizes this last quantity, we are done. \qed
Example

Fix a real number α and consider the sequence $\{j^\alpha\}$. If $\alpha > 0$ then it is easy to see that $j^\alpha \to +\infty$: to verify this assertion fix $M > 0$ and take the number N to be the first integer after $M^{1/\alpha}$. If $\alpha = 0$ then j^α is a constant sequence, identically equal to 1. If $\alpha < 0$ then $j^\alpha = 1/j^{-\alpha}$. The denominator of this last expression tends to $+\infty$ hence the sequence j^α tends to 0. □
Example

The sequence \(\{j^{1/j}\} \) converges to 1. In fact, consider the expressions \(\alpha_j = j^{1/j} - 1 > 0 \). We have that

\[j = (\alpha_j + 1)^j \geq \frac{j(j-1)}{2} (\alpha_j)^2, \]

(the latter being just one term from the binomial expansion). Thus

\[0 < \alpha_j \leq \sqrt{2/(j-1)} \]

as long as \(j \geq 2 \). It follows that \(\alpha_j \to 0 \) or \(j^{1/j} \to 1 \). \qed
Example

Let α be a positive real number. Then the sequence $\alpha^{1/j}$ converges to 1. To see this, first note that the case $\alpha = 1$ is trivial, and the case $\alpha > 1$ implies the case $\alpha < 1$ (by taking reciprocals). So we concentrate on $\alpha > 1$. But then we have

$$1 < \alpha^{1/j} < j^{1/j}$$

when $j > \alpha$. Since $j^{1/j}$ tends to 1, an earlier proposition applies and the proof is complete.
Example
Let $\lambda > 1$ and let α be real. Then the sequence

$$\left\{ \frac{j^\alpha}{\lambda^j} \right\}_{j=1}^{\infty}$$

converges to 0.

To see this, fix an integer $k > \alpha$ and consider $j > 2k$. [Notice that k is fixed once and for all but j will be allowed to tend to $+\infty$ at the appropriate moment.] Writing $\lambda = 1 + \mu$, $\mu > 0$, we have that

$$\lambda^j = (1 + \mu)^j > \frac{j(j-1)(j-2)\cdots(j-k+1)}{k(k-1)(k-2)\cdots2\cdot1} \cdot 1^{j-k} \cdot \mu^k.$$
Of course this comes from picking out the kth term of the binomial expansion for $(1 + \mu)^j$. Notice that, since $j > 2k$, then each of the expressions $j, (j - 1), \ldots (j - k + 1)$ in the numerator on the right exceeds $j/2$. Thus

$$\lambda j > \frac{j^k}{2^k \cdot k!} \cdot \mu^k$$

and

$$0 < \frac{j^\alpha}{\lambda j} < \frac{j^\alpha}{j^k \cdot \mu^k} = \frac{j^{\alpha-k} \cdot 2^k \cdot k!}{\mu^k}.$$

Since $\alpha - k < 0$, the right side tends to 0 as $j \to \infty$. \blacksquare
Example

The sequence

\[
\left\{ \left(1 + \frac{1}{j} \right)^j \right\}
\]

converges. In fact it is increasing and bounded above. Use the Binomial Expansion to prove this assertion. The limit of the sequence is the number that we shall later call \(e \) (in honor of Leonhard Euler, 1707–1783, who first studied it in detail). We shall study this sequence in detail later in the book.
Example

The sequence

\[(1 - \frac{1}{j})^j\]

converges to \(1/e\), where the definition of \(e\) is given in the last example. More generally, the sequence

\[(1 + \frac{x}{j})^j\]

converges to \(e^x\) (here \(e^x\) is defined as in the earlier discussion). \(\square\)