Figure: This is your instructor.
Today we will have a short lesson on perfect sets. Anyway, this is a good way to end the chapter.

Definition: A set $S \subseteq \mathbb{R}$ is called *perfect* if it is closed and if every point of S is an accumulation point of S.

The property of being perfect is a rather special one: it means that the set has no isolated points.
Example: Consider the set $S = [0, 2]$. This set is perfect. Because (i) it is closed, (ii) any interior point is clearly an accumulation point, (iii) 0 is the limit of $\{1/j\}$ so is an accumulation point, and (iv) 2 is the limit of $\{2 - 1/j\}$ so is an accumulation point.
Clearly any closed interval \([a, b]\) is perfect. After all, a point \(x\) in the interior of the interval is surrounded by an entire open interval \((x - \epsilon, x + \epsilon)\) of elements of the interval; moreover \(a\) is the limit of elements from the right and \(b\) is the limit of elements from the left.
Example: The Cantor set, *a totally disconnected set*, is perfect. It is definitely closed. Now fix $x \in C$. Then $x \in S_1$. Thus x is in one of the two intervals composing S_1. One (or perhaps both) of the endpoints of that interval does not equal x. Call that endpoint a_1. Likewise $x \in S_2$. Therefore x lies in one of the intervals of S_2. Choose an endpoint a_2 of that interval which does not equal x. Continuing in this fashion, we construct a sequence $\{a_j\}$. Notice that *each of the elements of this sequence lies in the Cantor set* (why?). Finally, $|x - a_j| \leq 3^{-j}$ for each j. Therefore x is the limit of the sequence. We have thus proved that the Cantor set is perfect. \Box
The fundamental theorem about perfect sets tells us that such a set must be rather large. We have

Theorem: A nonempty perfect set must be uncountable.
Proof: Let \(S \) be a nonempty perfect set. Since \(S \) has accumulation points, it cannot be finite. Therefore it is either countable or uncountable.

Seeking a contradiction, we suppose that \(S \) is countable. Write \(S = \{s_1, s_2, \ldots \} \). Set \(U_1 = (s_1 - 1, s_1 + 1) \). Then \(U_1 \) is a neighborhood of \(s_1 \). Now \(s_1 \) is a limit point of \(S \) so there must be infinitely many elements of \(S \) lying in \(U_1 \). We select a bounded open interval \(U_2 \) such that \(\overline{U}_2 \subseteq U_1 \), \(\overline{U}_2 \) does not contain \(s_1 \), and \(U_2 \) does contain some element of \(S \).
Continuing in this fashion, assume that \(s_1, \ldots, s_j \) have been selected and choose a bounded interval \(U_{j+1} \) such that (i) \(\overline{U}_{j+1} \subseteq U_j \), (ii) \(s_j \not\in \overline{U}_{j+1} \), and (iii) \(U_{j+1} \) contains some element of \(S \).

Observe that each set \(V_j = \overline{U}_j \cap S \) is closed and bounded, hence compact. Also each \(V_j \) is nonempty by construction but \(V_j \) does not contain \(s_{j-1} \). It follows that \(V = \cap_j V_j \) cannot contain \(s_1 \) (since \(V_2 \) does not), cannot contain \(s_2 \) (since \(V_3 \) does not), indeed cannot contain any element of \(S \). Hence \(V \), being a subset of \(S \), is empty. But \(V \) is the decreasing intersection of nonempty compact sets, hence cannot be empty!

This contradiction shows that \(S \) cannot be countable. So it must be uncountable. \(\square \)
Corollary: If $a < b$ then the closed interval $[a, b]$ is uncountable.
Proof: The interval $[a, b]$ is perfect. □
We also have a new way of seeing that the Cantor set is uncountable, since it is perfect:

Corollary: *The Cantor set is uncountable.*