5.2
1. Let S be a set and $T = \{ t \in \mathbb{R} : |s - t| < \varepsilon \}$ for some $s \in S$.
 We claim that T is open. Let $t \in T$.
 Then there is an $s \in S$ such that $|s - t| < \varepsilon$.
 Let u be a point such that $|u - t| < \varepsilon - n$. Then

 $|u - s| \leq |u - t| + |t - s| < (\varepsilon - n) + \eta = \varepsilon$.
 So $u \in T$. Hence $(t - (\varepsilon - n), t + (\varepsilon - n)) \subseteq T$.
 So T is open.

3. The set $[0, 1)$ is neither open nor closed.

5. Let $X_j = \{ j \to \infty \}$. Then $\bigcap_{j=1}^{\infty} X_j = \emptyset$.
 And each X_j is closed.

7. Let $U_j = (-\frac{1}{j}, 1 + \frac{1}{j})$. Then each U_j is open and
 $\bigcap_{j=1}^{\infty} U_j = [0, 1]$ which is closed.
§ 4.2

1. Let S be any set of real numbers. The closure of S is $\overline{S} = S \cup \partial S$. So obviously $S \subseteq \overline{S}$.

Let $x \in$ complement of S, so $x \notin S$ and $x \notin \partial S$. Thus there is a neighborhood of x that does not intersect both S and ∂S.

That neighborhood obviously cannot intersect ∂S. And it does not intersect S. So, it lies in $\mathcal{C}(S \cup \partial S)$. Thus $\mathcal{C}(S \cup \partial S)$ is open. Hence

$\overline{S} = S \cup \partial S$ is closed.

Let $y \in \overline{S}$. Then of course $y \in S$ and y cannot be in the interior of S because no neighborhood of y lies entirely in S.

So $y \in \partial S$.

Now let $z \in \overline{S} \setminus S$. So no neighborhood of z lies entirely in S. So every neighborhood of z intersects ∂S. Since $\overline{S} = S \cup \partial S$, z either lies in S or in ∂S. In the first case, every neighborhood of z contains a point of S (namely z).

In the second case, every neighborhood of z contains a point of S (that is the definition of boundary point). So $z \in \partial S$. Thus $\overline{S} \subseteq S \cup \partial S$.
2. \(S = \{ 1, \frac{1}{2}, \frac{1}{3}, \ldots \} \cup \{ 0 \} \).
\[S = \emptyset \]
\[\emptyset \subseteq S \]

3. Let \(E_j = [\frac{j}{j^2}, 1 - \frac{j}{j^2}] \). Then each \(E_j \) is closed and \(\bigcap_{j=1}^{\infty} E_j = (0, 1) \), which is open. Instead let \(F_j = [0, 1] \). Then each \(F_j \) is closed and \(\bigcap_{j=1}^{\infty} F_j = [0, 1] \), which is closed.

5. Let \(S \subseteq \mathbb{R} \), let \(s \in S \). So \(\exists \varepsilon > 0 \) such that \((s - \varepsilon, s + \varepsilon) \subseteq S \). Let \(t \in (s - \varepsilon, s + \varepsilon) \). So \(|t - s| = \varepsilon < \varepsilon \). If \(|u - t| < \varepsilon - \varepsilon \), then
\[|u - s| \leq |u - t| + |t - s| < (\varepsilon - \varepsilon) + \varepsilon = \varepsilon \] so \(u \in S \). Hence \(S \) is open.

Let \(S \) be open, let \(s \in S \). Then \(\exists \varepsilon > 0 \) so that \((s - \varepsilon, s + \varepsilon) \subseteq S \). So \(s \in S \). Hence \(S \subseteq S \). Now let \(t \in S \). Then \(\exists \varepsilon > 0 \) such that \((t - \varepsilon, t + \varepsilon) \subseteq S \). Hence \(t \in S \). Thus \(S \subseteq S \).

In conclusion, \(S = S \).

Conversely, assume \(S = \emptyset \). Let \(x \in S \). Then \(x \in S \). So \(\exists \varepsilon > 0 \) such that \((x - \varepsilon, x + \varepsilon) \subseteq S \). So \(S \) is open.
Eq. 3

1. Let K be compact and E closed. Then K\(\cap\)E is closed and bounded, so K\(\cap\)E is closed. Also K\(\cap\)E \(\subseteq\) K, so K\(\cap\)E is bounded. Hence K\(\cap\)E is compact.

2. Let K be compact and \(U\) open such that \(U \supseteq K\). If \(k \in K\) then \(k \in U\) so \(\exists \varepsilon > 0\) such that \(k - \varepsilon, k + \varepsilon \subseteq U\). Thus let \(J_k = (k - \varepsilon/2, k + \varepsilon/2)\). Then the intervals \(J_k\) form an open cover of K. So there is a finite subcover

\[
(k_1 - \varepsilon_1/2, k_1 + \varepsilon_1/2), (k_2 - \varepsilon_2/2, k_2 + \varepsilon_2/2), \ldots, (k_m - \varepsilon_m/2, k_m + \varepsilon_m/2).
\]

Let \(\varepsilon = \min \{\varepsilon_1/2, \varepsilon_2/2, \ldots, \varepsilon_m/2\}\).

If \(x \in K\) is any point then \(x \in J_{k_l}\) for some \(l = 1, \ldots, m\). So if \(|t - x| < \varepsilon\) then

\[
|t - k_l| \leq |t - x| + |x - k_l| < \varepsilon + \varepsilon/2 = \varepsilon/2.
\]

Hence \(t \in U\).
4. Let \(K \) be a compact set. For each \(k \in K \), let \(I_k = (k - \delta, k + \delta) \). Then the \(I_k \) form an open cover of \(K \). So there is a finite subcover \(I_{k_1}, I_{k_2}, \ldots, I_{k_l} \) of \(K \). That is what we seek.

8. If \(K \) is compact then \(K \) is closed and bounded. So \(cK \) is open and unbounded. So \(cK \) is not compact.

\[\text{4.4} \]

1. We remove one set of length \(\frac{1}{3} \)
2. two sets of length \(\frac{1}{3} \)
3. four sets of length \(\frac{1}{3} \)
4. eight sets of length \(\frac{1}{3} \)

 etc.

So, the total length of all intervals removed is

\[
\sum_{j=1}^{\infty} \frac{2^{-j-1}}{5^j} = \frac{1}{5} \sum_{j=1}^{\infty} \left(\frac{2}{5} \right)^{j-1} = \frac{1}{5} \cdot \frac{2}{\frac{2}{5}} = \frac{1}{5} \cdot \frac{10}{3} = \frac{2}{3}.
\]

Thus, the constructed Cantor-like set has length \(\frac{2}{3} \).
We can assign a set of 0s and 1s to each element of this Cantor-like set, just as we did in the past. So the new Cantor set is uncountable.

This set is definitely different from the Cantor ternary set. After all, it has a different length.

3. Let $U = (0, 1)$ and $V = (1, 2)$. These are disjoint open sets. But if $\varepsilon > 0$, then $1 - \frac{\varepsilon}{3} \in U$ and $1 + \frac{\varepsilon}{3} \in V$ and

\[
|1 - \frac{\varepsilon}{3} - (1 + \frac{\varepsilon}{3})| = \frac{2\varepsilon}{3} < \varepsilon.
\]

So $\text{dist}(U, V) < \varepsilon$ for every $\varepsilon > 0$.

In conclusion, $\text{dist}(U, V) = 0$.

4. Let $0 < x < 1$, set $\varepsilon = \frac{x}{1 + 2^N}$. Construct a Cantor-like set by removing one intervel of length ε at stage 1, two intervals of length ε^2 at stage 2, four intervals of length ε^3 at stage 3, etc.
So the total length of intervals summed is

\[
\sum_{j=1}^{\infty} 2^{j-1} \varepsilon^j = \varepsilon \sum_{j=1}^{\infty} (2\varepsilon)^{j-1}
\]

\[
= \varepsilon \sum_{j=0}^{\infty} (2\varepsilon)^j = \frac{\varepsilon}{1-2\varepsilon} = \frac{1}{1-2\left(\frac{1}{1+2\varepsilon}\right)} = \frac{1}{\varepsilon} = \lambda.
\]

Thus the complement of the Cantor-like set we are constructing has length \(\lambda\).

6. The Cantor set has length 0. So if \(x, c \in C\) and \(\varepsilon > 0\) then \((c-\varepsilon, c+\varepsilon)\) will intersect the complement. Hence \((c-\varepsilon, c+\varepsilon) \notin C\).

Thus \(C = \emptyset\). By the same token, if \(x \in C\) then for every \(\varepsilon > 0\) \((x-\varepsilon, x+\varepsilon)\) intersects both \(C\) and \(\overline{C}\). So \(x \notin C\).

Since \(C\) is closed, it contains all its boundary points. So \(\partial C = C\).
4.5

1. \(\{F_j\} = \bigcup_{j=1}^{\infty} F_j \). The each \(F_j \) is closed and bounded, hence compact. Also \(F_1 \supseteq F_2 \supseteq \cdots \).

So \(\bigcap_{j=1}^{\infty} F_j \) is non-empty. Therefore \(\bigcup_{j=1}^{\infty} F_j \) cannot be all of \(\mathbb{R} \).

3. Let \(E \) and \(F \) be perfect. Then each of \(E \times F \) is closed and every point of each set is an accumulation point. It follows that \(E \times F \) is closed and each point is an accumulation point. In particular, if \((e, f) \in E \times F \) then \(\exists e_j \in E \) s.t. \(e_j \to e \) and \(\exists f_j \in F \) s.t. \(f_j \to f \). So \((e_j, f_j) \to (e, f) \).

6. A connected set is a interval. All intervals \([a, b] \) are perfect. The other are not. So \([a, b) \), \((a, b] \) and \((a, b) \) are connected and not perfect. The set \((a, b) \) is imperfect because its complement \((-\infty, a] \cup [b, \infty) \) is perfect.
It is very difficult to describe all imperfect sets.

3. The interior of a perfect set will still have every point as accumulation point, but it will not be closed.