PRACTICE FIRST MIDTERM EXAM

General Instructions: Read the statement of each problem carefully. If you want full credit on a problem then you must show your work. If you only write the answer then you will not receive full credit.

Be sure to ask questions if anything is unclear. This exam has 8 questions and is worth 100 points. You will have 50 minutes to take this exam.

(8 points) 1. Prove that the sequence

\[a_j = \frac{(-1)^{3j} \cdot 4}{j^2} \]

converges to 0.
2. What is the multiplicative inverse of the complex number $3 - 7i$?

3. Find all cube roots of the complex number $1 - i$.

(8 points) 4. What is the least upper bound of the set \(\{x \in \mathbb{R} : x^2 < 11\} \)? Give a reason for your answer.

(8 points) 5. Prove that if \(\liminf_{j \to +\infty} a_j = \limsup_{j \to +\infty} a_j \),

then the sequence \(\{a_j\} \) converges.
6. Discuss convergence and divergence for each of these series.

(a) \(\sum_{j=1}^{\infty} \frac{1}{j^2} \)

(b) \(\sum_{j=1}^{\infty} \frac{\frac{j!}{(5j)!}}{j} \)

(c) \(\sum_{j=2}^{\infty} \frac{1}{j \log^{1.5} j} \)

(9 points) 7. Let \(\sum_j a_j \) and \(\sum_j b_j \) be series of positive terms. Prove that, if there is a constant \(C > 0 \) such that

\[
\frac{1}{C} a_j \leq b_j \leq C a_j
\]

for all \(j \) large, then either both series converge or both series diverge.
(9 points) 8. Discuss convergence or divergence of the series

\[\sum_{j=1}^{\infty} \frac{\sin^2 j}{j} \, . \]

(8 points) 9. Let \(\sum_j a_j \) and \(\sum_j b_j \) be convergent series of positive real numbers. Discuss the convergence of \(\sum_j (a_j \cdot b_j^2) \).
(9 points) 10. If $1/2 > b_j > 0$ and if $\sum_j b_j$ converges then prove that

$$\sum_{j=1}^{\infty} \frac{b_j}{1 + b_j}$$

converges.

(8 points) 11. Let $\gamma > 0$ be a fixed real number. Give an example of a set whose sup and inf differ by γ.
(8 points) 12. Consider \(\{a_j\} \) both as a sequence and as a set. How are the limsup of the sequence and the sup of the set related? How are the liminf of the sequence and the inf of the set related? Give an example where they are both the same. Give an example where they are both different.