Figure: This is your instructor.
The Lebesgue Integral
Different Methods of Convergence
Let \((X, \mathcal{X}, \mu)\) be a measure space. In this course we have treated four different types of convergence of a sequence of \(\{f_j\}\) functions to a limit function \(f\):
(i) **pointwise convergence:** For each \(\epsilon > 0 \) and each \(x \in X \) there is a number \(J > 0 \) such that, if \(j > J \), then \(|f_j(x) - f(x)| < \epsilon \).

(ii) **uniform convergence:** For each \(\epsilon > 0 \) there is a number \(J > 0 \) such that, if \(j > J \) and \(x \in X \), then \(|f_j(x) - f(x)| < \epsilon \).

(iii) **convergence almost everywhere:** There exists a set \(E \subseteq X \) with \(\mu(E) = 0 \) so that, for every \(\epsilon > 0 \), and each \(x \in X \setminus E \), there is a number \(J > 0 \) such that, for \(j > J \), we have \(|f_j(x) - f(x)| < \epsilon \).

(iv) **convergence in \(L^p \), \(1 \leq p < \infty \):** For each \(\epsilon > 0 \) there is a number \(J > 0 \) so that, if \(j > J \), then

\[
\|f_j - f\|_{L^p} = \int |f_j(x) - f(x)|^p \, d\mu(x)^{1/p} < \epsilon.
\]
It is clear that uniform convergence implies pointwise convergence. Also pointwise convergence implies convergence almost everywhere. In the case of a finite measure space, uniform convergence also implies convergence in L^p. The reverse implications are false.

Example: Let $f_j(x) = \chi_{[j,\infty)}$. Then the f_j converge to the identically 0 function pointwise and almost everywhere, but not in L^p for any $p \geq 1$. They do not converge uniformly.

Let $g_j(x) = \chi_{[1,1+1/j]}$. These functions converge almost everywhere and in L^p to the identically 0 function. They do not converge pointwise, and they do not converge uniformly.
Proposition: Let (X, \mathcal{X}, μ) be a measure space. Assume that $\mu(X) < +\infty$. Let $\{f_j\}$ be a sequence of L^p functions that converges uniformly on X to a limit function f. Then $f \in L^p$ and the sequence $\{f_j\}$ converges in L^p to f.
Proof: Let $\epsilon > 0$ and choose a $J > 0$ such that when $j > J$ and $x \in X$, $|f_j(x) - f(x)| < \epsilon$. Observe that, if $j > J$, then

$$
\|f_j - f\|_{L^p} = \left\{ \int |f_j(x) - f(x)|^p \, d\mu \right\}^{1/p} \\
\leq \left\{ \int \epsilon^p \, d\mu \right\}^{1/p} \\
= \epsilon \mu(X)^{1/p}.
$$

(*)

We conclude that $\{f_j\}$ converges in L^p to f. \qed
Proposition: Let (X, \mathcal{X}, μ) be a measure space. Let $1 \leq p < \infty$. Let $\{f_j\}$ be a sequence in L^p which converges pointwise almost everywhere to a measurable function f. If there is a $g \in L^p$ such that

$$|f_j(x)| \leq g(x) \quad \forall x \in X, \forall j \in \mathbb{N},$$

then $f \in L^p$ and $f_j \to f$ in L^p.

Proof: Because of inequality (*), we see that $|f(x)| \leq g(x)$ almost everywhere. Since $g \in L^p$, we conclude that $f \in L^p$.
Observe that

\[|f_j(x) - f(x)|^p \leq [2g(x)]^p, \quad \text{a.e.} \]

Since \(\lim_{j \to \infty} |f_j(x) - f(x)|^p = 0 \) a.e. and \(2^p g^p \) belongs to \(L^1 \), the Lebesgue dominated convergence theorem tells us that

\[\lim_{j \to \infty} \int |f_j - f|^p \, d\mu = 0. \]

As a result, \(f_j \to f \) in \(L^p \). \qed
Corollary: Let \((X, \mathcal{X}, \mu)\) be a measure space. Assume that
\(\mu(X) < +\infty\). Let \(1 \leq p < \infty\). Let \(\{f_j\}\) be a sequence in \(L^p\) which converges almost everywhere to a measurable function \(f\). If there is a constant \(K > 0\) such that

\[|f_j(x)| \leq K \quad \forall x \in X, \forall j \in \mathbb{N}, \quad \text{(**)\]

then \(f\) belongs to \(L^p\) and the sequence \(\{f_j\}\) converges to \(f\) in \(L^p\).
Proof: Since $\mu(X) < +\infty$, then the constant functions belong to L^p. So the function $g(x) \equiv K$ is in L^p. Now apply the proposition.

One might suppose that L^p convergence implies almost everywhere convergence. But the next example shows that that is not the case.
Example: Let $X = [0, 1]$, B be the Borel sets, and μ be Lebesgue measure. Consider the intervals in $[0, 1]$ with dyadic\(^1\) endpoints. Order these intervals in decreasing order of size. Let f_j be the characteristic function of the jth interval.

Then it is clear that the f_j tend to $f \equiv 0$ in L^p norm. But, if x is any point of $[0, 1]$, then there is a subsequence f_{j_k} that equals 1 at x and there is another subsequence f_{j_ℓ} that equals 0 at x. So we do \textit{not} have pointwise convergence at \textit{any point} of the interval $[0, 1]$.

\(^1\)A point is dyadic if it has the form $j/2^k$.

In this section we treat a new concept of convergence which is analytically useful. And it is intuitively appealing.

Definition: Let \((X, \mathcal{X}, \mu)\) be a measure space. A sequence \(\{f_j\}\) of measurable functions is said to **converge in measure** to a measurable function \(f\) precisely when

\[
\lim_{j \to \infty} \mu(\{x \in \mathbb{R} : |f_j(x) - f(x)| \geq \alpha\}) = 0
\]

for each \(\alpha > 0\).
The sequence \(\{f_j\} \) is said to be \textit{Cauchy in measure} when

\[
\lim_{j,k \to \infty} \mu(\{x \in \mathbb{R} : |f_j(x) - f_k(x)| \geq \alpha\}) = 0
\]

for each \(\alpha > 0 \).
Example: Let $f_j(x) = \chi_{[j,\infty)}$. Then the f_j do not converge in measure. Indeed they are not Cauchy in measure.

Let $g_j(x) = \chi_{[1,1+1/j]}$. Then the g_j converge in measure to the identically 0 function.
Proposition: Let \((X, \mathcal{X}, \mu)\) be a measure space. If the functions \(\{f_j\}\) converge in \(L^p\), \(1 \leq p < \infty\), then the sequence converges in measure.
Proof: Let $\alpha > 0$. Set

$$E_j(\alpha) = \{x \in \mathbb{R} : |f_j(x) - f(x)| \geq \alpha\}.$$

Then

$$\int |f_j - f|^p d\mu \geq \int_{E_j(\alpha)} |f_j - f|^p d\mu \geq \alpha^p \cdot \mu(E_j(\alpha)).$$

We know that $\|f_j - f\|_{L^p} \to 0$. Since $\alpha > 0$, we may conclude that $\mu(E_j(\alpha)) \to 0$ as $j \to \infty$. \qed