SOLUTIONS TO MIDTERM

2. (a) The set \((0, 0) = \emptyset\) lies in \(A\).
 The set \((-\infty, \infty) = \mathbb{R}\) lies in \(A\).

(b) The set \((0, 1)\) lies in \(A\),
 but the complement of this set is
 \((-\infty, 0] \cup [1, \infty)\) and that does not lie
 in \(A\),
 So \(A\) is not a \(\sigma\)-algebra.

2. If \(E_1, E_2, \ldots\) lie in the \(\sigma\)-algebra, then
 \[
 \bigcap_{j=1}^{\infty} E_j = \left(\bigcup_{j=1}^{\infty} E_j \right)'
 \]
 by de Morgan's Law. And the \(\sigma\)-algebra is closed
 under complementation and countable union.
 So \(\bigcap_{j=1}^{\infty} E_j\) lies in the \(\sigma\)-algebra.

3. Let \(M = \|f\|_{L^\infty}\). Then
 \[
 \|f\|_{L^p} = \left(\int |f|^p \, dx \right)^{1/p} \leq \left(\int M^p \, dx \right)^{1/p} = M,
 \]
 So linearly \(\|f\|_{L^p} \leq M\).

 Now let \(\varepsilon > 0\). Choose a set \(E\) of positive
 measure so that \(|f| \geq M - \varepsilon\) on \(E\).
Then

\[\|f\|_{L^p} \geq \left(\int_{-\infty}^{\infty} (M - \varepsilon)^p \, du \right)^{1/p} = (M - \varepsilon) \mu(E)^{1/p}. \]

Thus

\[\liminf_{p \to \infty} \|f\|_{L^p} \geq M - \varepsilon. \]

Since this is true for all \(\varepsilon > 0 \), we see that

\[\liminf_{p \to \infty} \|f\|_{L^p} \geq M. \]

And

\[\limsup_{p \to \infty} \|f\|_{L^p} \leq M. \]

Hence

\[\lim_{p \to \infty} \|f\|_{L^p} = M = \|f\|_{L^\infty}. \]

4. Let \(f \in L^{p_2}. \) Then

\[\|f\|_{L^{p_2}} = \left(\int |f|^{p_2} \, du \right)^{1/p_2} = \left(\int |f|^{p_2} \cdot 1 \, du \right)^{1/p_2} \]

(Hölder's)

\[\leq \left(\int |f|^{p_2} \, du \right)^{1/p_2} \cdot \left(\int 1^{p_2/p_2} \, du \right)^{p_2/p_2} \]

\[\leq C \cdot \|f\|_{L^{p_2}}. \]

So \(f \in L^{p_1}. \)
On the real line, consider the function
\[f(x) = \begin{cases} \frac{1}{x^{1/3}} & \text{if } x \geq 1 \\ 0 & \text{if } x < 1. \end{cases} \]

Then
\[\int |f|^2 \, du = \int_1^\infty \frac{1}{x^{2/3}} \, dx < \infty \]
because \(p_2 / p_1 > 1 \).

But
\[\int |f|^1 \, du = \int_1^\infty \frac{1}{x} \, dx = +\infty \]
so \(f \notin L^1 \).

5. Let
\[f_1(x) = f_3(x) = f_5(x) = \ldots = 1 \text{ for } 0 \leq x < 1, \quad 0 \text{ otherwise}, \]
\[f_2(x) = f_4(x) = f_6(x) = \ldots = 2 \text{ for } 0 \leq x < 1, \quad 0 \text{ otherwise}. \]

Then
\[\int f_{2j-1} \, du = 1 \]
\[\int f_{2j} \, du = 2 \quad \text{for } j = 1, 2, \ldots \]

So
\[\lim_{j \to \infty} \int f_j \, du \text{ does not exist} \]
and
\[\lim_{j \to \infty} \int f_j \, du \text{ does not exist}. \]
For a positive result, let
\[g_1 = f_1 + f_2 \]
\[g_2 = f_3 + f_4 \]
\[g_3 = f_5 + f_6 \]

etc.

Then \(g_1 \leq g_2 \leq g_3 \leq \ldots \). So LMC T applies and
\[\lim_{j \to \infty} \int g_j \, du = \int \lim_{j \to \infty} g_j \, du \]

6. Clearly \(\lim_{j \to \infty} f_j(x) \) exists. Also LMC T applies

with \(g = f_1 \). So
\[\lim_{j \to \infty} \int f_j \, du = \int \lim_{j \to \infty} f_j \, du \]

7. We see that
\[\lim_{j \to \infty} \inf f_j(x) = 0 \]

And\[\lim_{j \to \infty} \left(\int f_j \, du \right) = 2\pi \]

So \(0 \leq 2\pi \) is consistent with Fatou's Lemma.
8. We may as well assume that \(f \geq 0 \). Then we know that there are simple functions \(s_j \) such that \(s_1 \leq s_2 \leq \ldots \leq f \) and \(s_j \to f \) pointwise. Then L,MCT tells us that

\[
\lim_{j \to \infty} \int s_j^2 \, dx = \int \lim_{j \to \infty} s_j^2 \, dx = \int f^2 \, dx.
\]

Also

\[
\lim_{j \to \infty} \int s_j \, dx = \int \lim_{j \to \infty} s_j \, dx = \int f \, dx.
\]

Hence

\[
\lim_{j \to \infty} \int (f - s_j)^2 \, dx = \lim_{j \to \infty} \int (f^2 - 2s_jf + s_j^2) \, dx
\]

\[
= \lim_{j \to \infty} \int f^2 \, dx - 2 \int s_j \, dx + \int s_j^2 \, dx
\]

\[
= \int f^2 \, dx - 2 \int s_j \, dx + \int s_j^2 \, dx
\]

\[
= \int s_j^2 \, dx - 2 \int s_j \, dx + \int f^2 \, dx - \int f^2 \, dx = 0.
\]

9. Each \(f^{-1}(\mathbb{R} \times 0) \) is disjoint from \(f^{-1}(\mathbb{R} \times 0) \) if \(x \neq x' \). And each \(f^{-1}(\mathbb{R} \times 0) \) contains a distinct rational number. So there could only be countably many of them. Contradiction.
20. Let $F(x) = \chi_\mathbb{Q}(x)$. Then F is Lebesgue integrable and
\[\int f \, du = 0. \]

But f is not Riemann integrable because it is discontinuous at every point (and a Riemann integrable function has discontinuities that form a set of measure 0).

11. Write

\[g - f = (g - f)^+ - (g - f)^-. \]

First we treat $$(g - f)^+.$$ For $j \in \mathbb{N}$, set $h_j = \frac{1}{j} - (g - f)^+.$

Then $h_1 \leq h_2 \leq \ldots$. So LMCT applies and

\[\lim_{j \to \infty} \int h_j \, du = \int (g - f)^+ \, du > 0. \]

Hence, for j large,

\[\int h_j \, du > 0 \]

or

\[\int (g - f)^+ \, du > 0. \]

Of course, by hypothesis, $\int (g - f)^- \, du < \int (g - f)^+ \, du.$ So, for some j large enough, \(\int (g - f)^+ - (g - f)^- \, du > 0. \)
22. Let
\[f(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ \frac{1}{x^{1/\rho} \log x^{1/\rho}} & \text{if } 0 < x < \frac{1}{2} \text{ or } 2 < x < \infty \\ 0 & \text{if } \frac{1}{2} \leq x \leq 2 \end{cases} \]
Then
\[|f(x)|^p = \frac{1}{x (\log x)^{2}} \]
i.e. \(0 < x < \frac{1}{2} \text{ or } 2 < x < \infty\).

Hence
\[
\int |f(x)|^p \, dx = \int_{0}^{\infty} \frac{1}{x \log^2 x} \, dx = \int_{0}^{\frac{1}{2}} + \int_{2}^{\infty} \frac{1}{x \log^2 x} \, dx
\]
\[= -\frac{1}{\log x} \bigg|_{0}^{\frac{1}{2}} + \frac{1}{\log x} \bigg|_{2}^{\infty}
\]
\[= \frac{1}{\log 2} + \frac{1}{\log 2} = \frac{2}{\log 2}
\]
If \(p' > p \) then, for \(0 < x < 1/2 \),
\[|f(x)|^{p'} = \frac{1}{x^{1/\rho} \log x^{1/\rho}^{2p'/p} > \frac{1}{x^{\rho'/\rho - \varepsilon}} \}
\]
where \(\varepsilon \) is chosen so that \(\frac{\rho'}{\rho} - \varepsilon > 1 \). Then
\[|f(x)|^{p'} \text{ is not integrable at the origin.}
\]
If \(p' < p \) then, for \(x > 2 \)
\[|f(x)|^{p'} = \frac{1}{x^{1/\rho} \log x^{1/\rho}^{2p'/p} > \frac{1}{x^{\rho'/\rho + \varepsilon}} \}
\]
where \(\varepsilon \) is chosen so that \(\frac{\rho'}{p} + \varepsilon < 1 \).
Then \(|f(x)|^p\) is not integrable at \(+\infty\).

EXTRA CREDIT PROBLEM: This is actually an instance of the Baire Category Theorem. See

for statement, discussion, and proof. This s.t. actually states and proves the contrapositive.