Math 416 Spring, 2022
Krantz ’ April 28, 2022

SECOND MIDTERM

General Instructions: Read the statement of each problem
carefully. On each problem you should show your work. If you
only write the answer then you will not receive full credit.

Be sure to ask questions if anything is unclear. This exam is
worth 100 points.

(10 points) 1. Suppose that f is an entire function that satisfies the estimate
1f()| < C-(1+ 2%

for all z and for some positive integer k. Prove that f must be a
polynomial of degree at most.k. [Hint: Use the Cauchy estimates.
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(10 points) 2. Suppose that f is a holomorphic function on the unit disc and that
Ref(0) > Ref(2)

for all z in the unit disc. Prove that f must be constant. [Hint:
Consider an exponential function.]
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(10 points) 3. What is the residue of the function

f(z) = )

at the origin?
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(10 points) 4. Show that the function

has a removable singularlt‘, at the orlgm
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(10 points) 5. Use the calculus of residues to evaluate the integral

/°° dx
—001+.T2.
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(10 points) 6. Let each f; be entire and non-vanishing. Suppose that f; — f uni-
formly on compact sets and that f(0) = 1. Prove that in fact f vanishes

nowhere.
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(10 points) 7. What is a Mobius transformation? What is the inverse of that Mébius
transformation?
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(10 points) 8. What kind of singularity does the function e!/* have at infinity?
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(10 points) 9. Give the first three terms of the Laurent expansion of
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f(z) =

sin

about the origin.
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(10 points)  10. Prove that if f is holomorphic on the unit disc and

P F0) =0
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for all j = 0,1,2,..., then f is identically equal to 0 on the unit disc.
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