1. Consider K_n, $n \geq 3$. There are $\binom{n}{k}$ ways of choosing k vertices from n. There are $k!$ ways of ordering the vertices to form a cycle.

We want distinct cycles, and each cycle occurs have k times (i.e., the same order but beginning at a different vertex). So we have

$$\frac{1}{k} \binom{n}{k} \cdot k! = \binom{n}{k} \cdot (k-1)!$$

cycles on k vertices. The total number of cycles is

$$\sum_{k=3}^{n} \binom{n}{k} \cdot (k-1)!$$

2. Let G be a given graph. Let G_1, G_2 be even subgraphs. Let $v \in V(G)$. Let S_1 be the set of incident edges to v in G_1 and S_2 be the set of incident edges to v in G_2.

Then $|S_1 \Delta S_2| = |S_1 \cap (S_1 \cap S_2)| + |S_2 \cap (S_1 \cap S_2)|$.

Since G_1, G_2 are even subgraphs, $|S_1|$ and $|S_2|$
are both even. So

\[\left| S_1 \triangle S_2 \right| \] and \[\left| S_2 \setminus (S_1 \triangle S_2) \right| \]

have the same parity. Hence \[\left| S_1 \triangle S_2 \right| \] is even.

Since this assertion holds for every vertex \(v \), \(G_1 \triangle G_2 \) is even.

In case \(G_2 \), \(G_1 \) are both odd, similar reasoning shows that \(\left| S_1 \triangle (S_1 \setminus S_2) \right| \) and \(\left| S_2 \setminus (S_1 \triangle S_2) \right| \) have the same parity.
So \[\left| S_1 \triangle S_2 \right| \] is even and \(G_1 \triangle G_2 \) is even.

3. There are many different ways to answer this question:

a) \(K_{3,3} \) has six vertices and \(K_{3,2} + K_3 \) has eight vertices. So \(K_{3,3} \) has characteristic polynomial of degree 6 while \(K_{3,2} + K_3 \) has characteristic polynomial of degree 8. The characteristic polynomials are unequal hence the graphs are not isomorphic.
b) The adjacency matrix for $K_{3,3}$ has eigenvalues $3, -3$.

The adjacency matrix for $K_{3,3} + K_3$ has eigenvalues $3, \sqrt{6}, -\sqrt{6}$.

Since the eigenvalues are different, the graphs are not isomorphic.

4. The degree of the characteristic polynomial tells us the number of vertices, so $n(G) = 8$. The coefficient of $x^{n(G) - 2} = x^6$ equals $-e(G)$, so $e(G) = 24$.

Cormen 8.6.6 tells us that the coefficient of $x^{n(G) - 3} = x^5$ is -2 times the number of triangles in G. So G has 32 triangles.

Taking all this information into account, we must delete 41 edges from K_8 to achieve 24 edges and 32 triangles. If we do that in a generic way we get the graph $K_{3,3,2,2}$.

A calculation verifies that this has the right char. poly.
5. The probability that i is fixed, $1 \leq i \leq n$, is

$$\frac{(n-1)!}{n!} = \frac{1}{n}.$$

Let X_i be the indicator variable of i being fixed. Then

$$E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} \frac{1}{n} = 1.$$

6. For a vertex to have degree k, it must have k neighbors. The probability of this happening is

$$\binom{n-1}{k} p^k (1-p)^{n-1-k}.$$

Let X_i be the indicator variable of the ith vertex being of degree k. Then

$$E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} \binom{n-1}{k} p^k (1-p)^{k} = n \binom{n-1}{k} p^k (1-p)^{k}.$$
7. Of course there are \((6)\) triples of vertices. Number these triples \(t_i\), \(1 \leq i \leq (6)\), let \(X_i\) be the indicator variable that the triple \(t_i\) is monochromatic. Then

\[
E(\sum X_i) = \sum_i E(X_i) = \sum_i \left[1 \cdot p(X_i = 1) + 0 \cdot p(X_i = 0) \right]
\]

\[
= (6) \cdot \frac{1}{3} \cdot 1
\]

\[
= (6) \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2}
\]

\[
= \frac{6 \cdot 4}{1 \cdot 2 \cdot 3} \cdot \frac{1}{9} = 5.
\]

8. Let \(A \subseteq V(G)\) be a randomly chosen set. So for each vertex \(v \in G\), \(v \notin A\) with probability \(p\) and \(v \in A\) with probability \(1-p\). Say that the subgraph \(S\) has \(M\) vertices and \(N\) edges. Certainly \(S\) has an independent set of size \(M - N\). Also \(G\) has \(\frac{nd}{2}\) edges. So

\[
E(M - N) = E(M) - E(N) = pn - p^2 \cdot \frac{nd}{2}
\]

\[
= -\frac{nd}{2} \left(p - \frac{1}{2}\right)^2 + \frac{n}{2d}.
\]
This last expression is maximized (using calculus) when \(p = \frac{1}{d} \). Taking \(p = \frac{1}{d} \), we see that

\[
E(M - N) = \frac{n}{2d}.
\]

So there is an independent set with at least \(\frac{n}{2d} \) vertices.

9.2 Every tree is bipartite. We induct on the number \(n(T) \) of vertices.

Basis Step: \(n = 1 \). A single vertex is trivially bipartite.

Inductive Step: \(n \geq 1 \). Suppose every tree on \(n \) vertices is bipartite, let \(T \) be a tree with \(n + 1 \) vertices. Since \(T \) has at least 2 vertices, \(T \) has at least two leaves, let \(v \) be one of the leaves, let \(T' = T \setminus v \). Then \(T' \) is still a tree, so the inductive hypothesis implies that \(T' \) is bipartite. For \(T \), we delete all vertices from \(T' \) in their partition set, and we assign \(v \) into the partition set that does not contain its only neighbor. This gives a bipartition for \(T \).
b) If course $K_{2,3}$ is bipartite, but it is not a tree because it contains cycles.

10. Let T be a tree with degree d. Certainly

$$d = \sum_{v \in V(T)} d(v) = \frac{2e(T)}{n(T)} = \frac{2(n(T)-1)}{n(T)}.$$

Solving for $n(T)$, we see that $n(T) = \frac{2}{2-d}$.

11. Let G be a graph with n vertices, m edges, and k components. If we choose 2 spanning trees from each component, that uses $m-k$ edges. Since adding an edge to a tree forms just one cycle, each of the remaining $m-n+k$ edges completes a cycle with edges in the spanning forest. The cycles formed are distinct because the edges being added are distinct. So G has $m-n+k$ cycles. Since $k \geq 1$, G has at least $m-n+k$ cycles.
12. The number of vertices in a graph is the sum of the number of vertices in each component. Same for edges. So a graph with fewer edges than vertices must have a component with fewer edges than vertices. Such a component G^* is connected, and has $n(\overline{G^*})-1$ edges, so it is a tree.

13. An edge is a cut-edge iff it belongs to no cycle. So every edge in G is a cut-edge iff G has no cycle. If G is connected, then G is a tree.

Conversely, if G is a tree, then we know it is connected and every edge is a cut-edge.

24. $k = 3$

 \[
 k = 4
 \]

 $k = 5$

 $k = 6$ Impossible.
15. Let \(V_1, V_2, \ldots, V_{n-1} \) be the vertices of \(P_{n-1} \) in order. Let \(x \) be the added vertex that is adjacent to each \(V_j \). Then the spanning tree has diameter \(k \).