Construction of Lie groupoids

Songhao Li

University of Toronto, Canada

Ph.D. Thesis Defence
July 12, 2013
Outline

Introduction: Lie theory
 Lie groupoids
 Poisson groupoids

The blow-up construction
 Blowing up Lie groupoids
 Blowing up Poisson groupoids

The gluing construction
 The gluing construction

Application to log symplectic manifolds
 Log symplectic manifolds
 Symplectic pair groupoid
 Classification of symplectic groupoids
Lie groupoids

A Lie groupoid \mathcal{G} over the base manifold M is a category such that

- the set of objects is M, and the set of arrows \mathcal{G} is a manifold;
- the arrows are invertible;
- the source s and target t are submersions;
- the multiplication m and the identity id are smooth.
Introduction: Lie theory Lie groupoids

Lie groupoids

A Lie groupoid \mathcal{G} over the base manifold M is a category such that

- the set of objects is M, and the set of arrows \mathcal{G} is a manifold;
- the arrows are invertible;
- the source s and target t are submersions;
- the multiplication m and the identity id are smooth.

The structure maps are summarized by the following commutative diagram:

$$
\begin{array}{ccc}
\mathcal{G}_t \times_s \mathcal{G} & \xrightarrow{m} & \mathcal{G} \\
\downarrow i \quad \quad \quad \quad \quad \quad \downarrow t \quad \quad \quad \quad \quad \quad \quad \downarrow \text{id} \\
M & \xleftarrow{\text{id}} & \mathcal{G}_t \times_s \mathcal{G}
\end{array}
$$
Lie algebroids

A Lie algebroid A over the base manifold M is a vector bundle $A \to M$ with a Lie bracket $[\cdot, \cdot]$ on $\Gamma(A)$ and an anchor map $a : A \to TM$ that preserves the bracket and satisfies the Leibniz rule

$$[X, fY] = f[X, Y] + a(X)(f)Y. \quad (1.1)$$
Lie algebroids

A Lie algebroid A over the base manifold M is a vector bundle $A \to M$ with a Lie bracket $[\cdot, \cdot]$ on $\Gamma(A)$ and an anchor map $a : A \to TM$ that preserves the bracket and satisfies the Leibniz rule

$$[X, fY] = f[X, Y] + a(X)(f)Y. \quad (1.1)$$

Lie functor

For a Lie algebroid $\mathcal{G} \rightrightarrows M$, the vector bundle

$$\text{Lie}(\mathcal{G}) = \text{id}^* \ker (Ts : T\mathcal{G} \to TM) \quad (1.2)$$

with the bracket on left invariant vector fields, and the anchor $Tt : \text{Lie}(\mathcal{G}) \to TM$, is Lie algebroid.
Poisson groupoids

Poisson manifolds

A Poisson manifold is a manifold M with a bivector $\pi \in \mathfrak{x}^2(M)$ such that

$$[\pi, \pi] = 0,$$

(1.3)

where $[\cdot, \cdot]$ is the Schouten bracket.
Poisson groupoids

Poisson manifolds
A Poisson manifold is a manifold M with a bivector $\pi \in \mathfrak{x}^2(M)$ such that

$$[\pi, \pi] = 0,$$ \hspace{1cm} (1.3)

where $[\cdot, \cdot]$ is the Schouten bracket.

Poisson groupoids
A Poisson groupoid is a Lie groupoid $G \rightrightarrows M$ with a Poisson structure σ on G such that the graph of multiplication

$$\text{Graph}(m) = \{(g, h, m(g, h)) \mid (g, h) \in G_t \times sG\}$$ \hspace{1cm} (1.4)

is coisotropic with respect to $\sigma \oplus \sigma \oplus -\sigma$.
Poisson groupoids

Poisson manifolds
A Poisson manifold is a manifold M with a bivector $\pi \in \mathfrak{X}^2(M)$ such that

$$[\pi, \pi] = 0,$$ \hspace{1cm} (1.3)

where $[\cdot, \cdot]$ is the Schouten bracket.

Poisson groupoids
A Poisson groupoid is a Lie groupoid $G \rightrightarrows M$ with a Poisson structure σ on G such that the graph of multiplication

$$\text{Graph}(m) = \{(g, h, m(g, h)) \mid (g, h) \in G_t \times_s G\}$$ \hspace{1cm} (1.4)

is coisotropic with respect to $\sigma \oplus \sigma \oplus -\sigma$.

- The pushforward $\pi = s_\ast(\sigma) = -t_\ast(\sigma)$ is Poisson on M.

\[\text{Li (Toronto)}\]
Lie bialgebroids

Poisson algebroids

For a Poisson manifold \((M, \pi)\), the Poisson algebroid \(T^*_\pi M\) is \((T^* M, \pi^\#)\) with the Koszul bracket

\[
[\alpha, \beta] = L_{\pi^\#(\alpha)} \beta - L_{\pi^\#(\beta)} \alpha - d\pi(\alpha, \beta).
\]

\(1.5\)
A Poisson manifold is a smooth manifold equipped with a Lie bracket on its space of smooth functions that satisfies certain properties. The Koszul bracket on the Poisson algebroid of a Poisson manifold is given by:

\[[\alpha, \beta] = L_{\pi^\#} (\alpha) \beta - L_{\pi^\#} (\beta) \alpha - d\pi (\alpha, \beta)\].

For a Poisson manifold and a coisotropic submanifold \(C \subset M \), the conormal bundle \(N^\ast C \) is a Lie subalgebroid of the Poisson algebroid \(T^\ast \pi M \).
Lie bialgebroids

Poisson algebroids
For a Poisson manifold \((M, \pi)\), the Poisson algebroid \(T^*_\pi M\) is \((T^* M, \pi^\#)\) with the Koszul bracket

\[
\left[\alpha, \beta \right] = L_{\pi^\#(\alpha)} \beta - L_{\pi^\#(\beta)} \alpha - d\pi(\alpha, \beta).
\]

(1.5)

For a Poisson manifold \((M, \pi)\) and a coisotropic submanifold \(C \subset M\), the conormal bundle \(N^* C\) is a Lie subalgebroid of the Poisson algebroid \(T^*_\pi M\).

Lie functor for Poisson groupoids
For a Poisson groupoid \((G, \sigma) \rightrightarrows (M, \pi)\), the Lie algebroids \(A \doteq \text{Lie}(G)\) and \(A^* \doteq N^* (\text{id}(M))\) form a Lie bialgebroid, and we write

\[
\text{Lie}(G, \sigma) = (A, A^*).
\]

(1.6)
Symplectic groupoids

A symplectic groupoid is a Poisson groupoid $(\mathcal{G}, \sigma) \rightrightarrows (M, \pi)$ such that σ is non-degenerate.
Symplectic groupoids

A symplectic groupoid is a Poisson groupoid \((\mathcal{G}, \sigma) \Rightarrow (M, \pi)\) such that \(\sigma\) is non-degenerate.

For a symplectic groupoid \((\mathcal{G}, \sigma) \Rightarrow (M, \pi)\), we have

\[
\text{Lie}(\mathcal{G}) = T^*_\pi M, \\
\text{Lie}(\mathcal{G}, \sigma) = (T^*_\pi M, TM).
\] (1.7)
Symplectic groupoids

A symplectic groupoid is a Poisson groupoid \((\mathcal{G}, \sigma) \rightrightarrows (M, \pi)\) such that \(\sigma\) is non-degenerate.

- For a symplectic groupoid \((\mathcal{G}, \sigma) \rightrightarrows (M, \pi)\), we have

 \[
 \text{Lie}(\mathcal{G}) = T^*_\pi M, \\
 \text{Lie}(\mathcal{G}, \sigma) = (T^*_\pi M, TM).
 \] \hspace{1cm} (1.7)

- Conversely, the ssc groupoid integrating \(T^*_\pi M\) is naturally a symplectic groupoid.
Symplectic groupoids

A symplectic groupoid is a Poisson groupoid \((\mathcal{G}, \sigma) \Rightarrow (M, \pi)\) such that \(\sigma\) is non-degenerate.

- For a symplectic groupoid \((\mathcal{G}, \sigma) \Rightarrow (M, \pi)\), we have
 \[
 \text{Lie}(\mathcal{G}) = T^*_\pi M,
 \]
 \[
 \text{Lie}(\mathcal{G}, \sigma) = (T^*_\pi M, TM).
 \] (1.7)

- Conversely, the ssc groupoid integrating \(T^*_\pi M\) is naturally a symplectic groupoid.

- We will construct the symplectic groupoids of a class of Poisson manifolds, called log symplectic manifolds.
Example: A Log Symplectic Structure on S^2

Consider the 2-sphere S^2 with the longitude $\theta \in \mathbb{R}$ and latitude $\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, with the identification at the poles

$$(\pm \frac{\pi}{2}, \theta) \sim (\pm \frac{\pi}{2}, \theta')$$
Example: A Log Symplectic Structure on S^2

Consider the 2-sphere S^2 with the longitude $\theta \in \mathbb{R}$ and latitude $\varphi \in [\frac{-\pi}{2}, \frac{\pi}{2}]$, with the identification at the poles

$\left(\pm \frac{\pi}{2}, \theta\right) \sim \left(\pm \frac{\pi}{2}, \theta'\right)$

We define the Poisson structure

$$\pi \equiv \left(\frac{1}{\varphi + \frac{\pi}{2}} + \frac{1}{\varphi - \frac{\pi}{2}}\right) \frac{\partial}{\partial \varphi} \wedge \frac{\partial}{\partial \theta}.$$
Example: A Log Symplectic Structure on S^2

Consider the 2-sphere S^2 with the longitude $\theta \in \mathbb{R}$ and latitude $\varphi \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, with the identification at the poles

$$\left(\pm \frac{\pi}{2}, \theta \right) \sim \left(\pm \frac{\pi}{2}, \theta' \right)$$

We define the Poisson structure

$$\pi = \left(\frac{1}{\varphi + \frac{\pi}{2}} + \frac{1}{\varphi - \frac{\pi}{2}} \right) \frac{\partial}{\partial \varphi} \wedge \frac{\partial}{\partial \theta}.$$

Note that π is nondegenerate away from the equator $\{\varphi = 0\}$, and the degeneracy is linear

$$\lim_{\varphi \to 0} \frac{1}{\varphi} \left(\frac{1}{\varphi + \frac{\pi}{2}} + \frac{1}{\varphi - \frac{\pi}{2}} \right) = -\frac{8}{\pi^2}.$$
Lower elementary modifications

Lower elementary modification of vector bundles

Let L be a closed hypersurface of M. Let $A \to M$ be a vector bundle, and $B \to L$ a subbundle of $A|_L$. The lower elementary modification $[A:B]$ of A along B is the vector bundle with sheaf of sections given by

$$[A:B](U) = \{ X \in \Gamma(U, A) \mid X|_L \in \Gamma(U \cap L, B) \}$$

for open sets $U \subset M$. (2.1)
Lower elementary modifications

Lower elementary modification of vector bundles
Let L be a closed hypersurface of M. Let $A \rightarrow M$ be a vector bundle, and $B \rightarrow L$ a subbundle of $A|_L$. The lower elementary modification $[A:B]$ of A along B is the vector bundle with sheaf of sections given by

$$[A:B](U) = \{ X \in \Gamma(U, A) \mid X|_L \in \Gamma(U \cap L, B) \}, \quad (2.1)$$

for open sets $U \subset M$.

Lower elementary modification of Lie algebroids
If A is a Lie algebroid, and B is a Lie subalgebroid, then $[A:B]$ is a Lie algebroid.
The blow-up construction Blowing up Lie groupoids

Blowing up Lie groupoids

Theorem (Gualtieri-Li)

Let $\mathcal{G} \xrightarrow{\pi} M$ be a Lie groupoid, and let $\mathcal{H} \xrightarrow{\iota} L$ be a Lie subgroupoid over a closed hypersurface L. Let

$$s^{-1}(L) \subset \text{Bl}_\mathcal{H}(\mathcal{G}), \quad t^{-1}(L) \subset \text{Bl}_\mathcal{H}(\mathcal{G})$$

be the proper transforms of $s^{-1}(L)$ and $t^{-1}(L)$.

There is a unique Lie groupoid structure on

$$[\mathcal{G} : \mathcal{H}] = \text{Bl}_\mathcal{H}(\mathcal{G}) \setminus (s^{-1}(L) \cup t^{-1}(L))$$

(2.2)

such that the blow-down map $p : [\mathcal{G} : \mathcal{H}] \to \mathcal{G}$ is groupoid morphism.

Furthermore, we have

$$\text{Lie}([\mathcal{G} : \mathcal{H}]) = [\text{Lie}(\mathcal{G}) : \text{Lie}(\mathcal{H})].$$

(2.3)
Upper elementary modifications

Upper elementary modification of vector bundles
Let $A \to M$ be a vector bundle, and let $B \to L$ be a vector bundle over a closed hypersurface L with a surjective bundle morphism ϕ

$$K \hookrightarrow A|_L \twoheadrightarrow B. \quad (2.4)$$

Let f be a defining function of L, i.e. $f|_L = 0$ and $df|_L \neq 0$. The upper elementary modification $\{A:B\}$ of A along B is the vector bundle with sheaf of sections given by

$$\Gamma(\{A:B\}) = \{ X \in \Gamma(A) \otimes \mathcal{I}^{-1}_L \mid fX|_L \in \Gamma(K) \}. \quad (2.5)$$
Upper elementary modifications

Upper elementary modification of vector bundles
Let $A \to M$ be a vector bundle, and let $B \to L$ be a vector bundle over a closed hypersurface L with a surjective bundle morphism ϕ

$$K \hookrightarrow A|_L \twoheadrightarrow B.$$ \hspace{1cm} \hspace{1cm} (2.4)

Let f be a defining function of L, i.e. $f|_L = 0$ and $df|_L \neq 0$.

The upper elementary modification $\{A:B\}$ of A along B is the vector bundle with sheaf of sections given by

$$\Gamma(\{A:B\}) = \{ X \in \Gamma(A) \otimes I^{-1}_L \mid fX|_L \in \Gamma(K) \}.$$ \hspace{1cm} \hspace{1cm} (2.5)

Upper elementary modification of Lie algebroids
If $\phi : A|_L \twoheadrightarrow B$ is a surjective Lie algebroid comorphism, then the upper modification $\{A:B\}$ is a Lie algebroid.
Blowing up Poisson groupoids

Theorem (Li)

Let $(\mathcal{G}, \sigma) \rightrightarrows (M, \pi)$ be a Poisson groupoid, and let $\mathcal{H} \rightrightarrows L$ be a Poisson subgroupoid over a closed hypersurface L such that

$$\text{Lie} (\mathcal{G}, \sigma) = (A, A^*), \quad \text{Lie} (\mathcal{H}, \sigma_{\mathcal{H}}) = (B, B^*).$$

If the induced transverse Poisson structure on $N^*_{\text{id}(x)} \mathcal{H}$ is degenerate for every $x \in M$, then there is a unique multiplicative Poisson structure σ' on the blow-up groupoid $[\mathcal{G} : \mathcal{H}] \rightrightarrows M$ such that

$$\text{Lie} ([\mathcal{G} : \mathcal{H}], \sigma') = ([A : B], \{ A^* : B^* \}), \quad (2.6)$$

and the blow-down map $p : [\mathcal{G} : \mathcal{H}] \to \mathcal{G}$ is a Poisson groupoid morphism.
Orbit cover

Orbit cover of a Lie groupoid

An orbit cover of a Lie groupoid $\mathcal{G} \rightrightarrows M$ is a locally finite cover $\{U_i\}_{i \in I}$ of M such that each orbit of $\mathcal{G} \rightrightarrows M$ is contained in U_i for some $i \in I$.
Orbit cover

Orbit cover of a Lie groupoid

An orbit cover of a Lie groupoid $\mathcal{G} \rightrightarrows M$ is a locally finite cover $\{U_i\}_{i \in I}$ of M such that each orbit of $\mathcal{G} \rightrightarrows M$ is contained in U_i for some $i \in I$.

Orbit cover of a Lie algebroid

If $\mathcal{G} \rightrightarrows M$ is source-connected, then $\{U_i\}_{i \in I}$ is also an orbit cover for the underlying Lie algebroid $\text{Lie}(\mathcal{G})$.
Orbit cover

Orbit cover of a Lie groupoid
An orbit cover of a Lie groupoid $\mathcal{G} \rightrightarrows M$ is a locally finite cover $\{U_i\}_{i \in I}$ of M such that each orbit of $\mathcal{G} \rightrightarrows M$ is contained in U_i for some $i \in I$.

Orbit cover of a Lie algebroid
If $\mathcal{G} \rightrightarrows M$ is source-connected, then $\{U_i\}_{i \in I}$ is also an orbit cover for the underlying Lie algebroid $\mathfrak{Lie}(\mathcal{G})$.

Restriction of a Lie groupoid
The restriction of a Lie groupoid $\mathcal{G} \rightrightarrows M$ to an open set $U \subset M$, denoted by $(\mathcal{G}|_U)^c$, is the source-connected part of $s^{-1}(U) \cap t^{-1}(U)$.

Orbit cover

Orbit cover of a Lie groupoid
An orbit cover of a Lie groupoid $\mathcal{G} \rightrightarrows M$ is a locally finite cover $\{U_i\}_{i \in I}$ of M such that each orbit of $\mathcal{G} \rightrightarrows M$ is contained in U_i for some $i \in I$.

Orbit cover of a Lie algebroid
If $\mathcal{G} \rightrightarrows M$ is source-connected, then $\{U_i\}_{i \in I}$ is also an orbit cover for the underlying Lie algebroid $\text{Lie}(\mathcal{G})$.

Restriction of a Lie groupoid
The restriction of a Lie groupoid $\mathcal{G} \rightrightarrows M$ to an open set $U \subset M$, denoted by $(\mathcal{G}|_U)^c$, is the source-connected part of $s^{-1}(U) \cap t^{-1}(U)$.

Idea: inspired by [Nistor]
An orbit cover $\{U_i\}_{i \in I}$ enables us to glue Lie groupoids over the open sets U_i’s such that the restriction to U_{ij} agree.
The gluing theorem

Theorem (Gualtieri-Li)

For an integrable Lie algebroid A with an orbit cover $\{U_i\}_{i \in I}$, let $G_i \rightrightarrows U_i$ be a source-connected Lie groupoid and let $\phi_{ij} : (G_i|_{U_{ij}})^c \rightarrow (G_j|_{U_{ij}})^c$ be groupoid isomorphisms satisfying $\text{Lie}(\phi_{ij}) = \text{id}$, $\phi_{ii} = \text{id}$, $\phi_{ij} = \phi_{ji}^{-1}$ and the cocycle condition. The fibered coproduct of manifolds

$$G \doteq \coprod_{i \in I} G_i \simeq$$

is a source-connected Lie groupoid integrating A, such that $(G|_{U_i})^c = G_i$. Moreover, every source-connected groupoid is obtained in this way.
Illustration: the gluing construction

\[(G|_U)^c \quad \text{and} \quad (G|_V)^c\]
Log symplectic manifolds

A log symplectic manifold is a $2n$-manifold M with a Poisson structure π whose Pfaffian, π^n, vanishes transversely.
Log symplectic manifolds

A log symplectic manifold is a $2n$-manifold M with a Poisson structure π whose Pfaffian, π^n, vanishes transversely.

Properness

A log symplectic manifold (M, π) is proper if each connected component D_j of the degeneracy locus D is compact and contains a compact symplectic leaf.
Log symplectic manifolds

A log symplectic manifold is a $2n$-manifold M with a Poisson structure π whose Pfaffian, π^n, vanishes transversely.

Properness

A log symplectic manifold (M, π) is proper if each connected component D_j of the degeneracy locus D is compact and contains a compact symplectic leaf.

Theorem (Guillemin-Miranda-Pires)

For a proper log symplectic manifold, each D_j is a symplectic mapping torus. In particular, $f_j : D_j \to \gamma_j$ is a symplectic fibre bundle.
Illustration: proper log symplectic manifolds
Symplectic pair groupoid

Idea
The blow-up of the pair groupoid \((\text{Pair}(M), \pi \oplus -\pi)\) along the Poisson subgroupoid \(\text{Pair}_f(D) \cong \bigsqcup_j (D_j \times \gamma_j D_j)\), yields a symplectic groupoid \((\text{Pair}_\pi(M), \sigma)\).
Symplectic pair groupoid

Idea
The blow-up of the pair groupoid $(\text{Pair}(M), \pi \oplus -\pi)$ along the Poisson subgroupoid $\text{Pair}_f(D) \doteq \bigsqcup_j (D_j \times \gamma_j D_j)$, yields a symplectic groupoid $(\text{Pair}_\pi(M), \sigma)$.

Theorem (Gualtieri-Li)
For a proper log symplectic manifold (M, π), the symplectic pair groupoid $(\text{Pair}_\pi(M), \sigma)$ is the adjoint symplectic groupoid.
Symplectic pair groupoid

Idea
The blow-up of the pair groupoid \((\text{Pair}(M), \pi \oplus -\pi)\) along the Poisson subgroupoid \(\text{Pair}_f(D) = \bigsqcup_j (D_j \times \gamma_j D_j)\), yields a symplectic groupoid \((\text{Pair}_\pi(M), \sigma)\).

Theorem (Gualtieri-Li)
For a proper log symplectic manifold \((M, \pi)\), the symplectic pair groupoid \((\text{Pair}_\pi(M), \sigma)\) is the adjoint symplectic groupoid.

Corollary (Gualtieri-Li)
For a proper log symplectic manifold \((M, \pi)\), every integration of the Poisson algebroid \(T^*_\pi M\) is a symplectic groupoid.
Illustration: symplectic pair groupoid

Pairc(D) \ s^{-1}(D) = D \times M

id(M)

t^{-1}(D) = M \times D

Pair(M)

Pairf(D)

Pair_\pi(M)

p

Pair(M)

Pair_\pi(D)
Classification of symplectic groupoids

Idea
The gluing theorem enables us to classify the symplectic groupoids of a proper log symplectic manifold.
Classification of symplectic groupoids

Idea
The gluing theorem enables us to classify the symplectic groupoids of a proper log symplectic manifold.

Theorem (Gualtieri-Li)
For a proper log symplectic manifold \((M, \pi)\), the Hausdorff symplectic groupoids are classified by a family of normal subgroups \(K_i \triangleleft \pi_1(V_i, y_i)\) for each connected component \(V_i \subset (M \setminus D)\) that ‘agree’ when pulling back to the symplectic leaves of the degeneracy locus \(D\).
Classification of symplectic groupoids

Idea
The gluing theorem enables us to classify the symplectic groupoids of a proper log symplectic manifold.

Theorem (Gualtieri-Li)
For a proper log symplectic manifold \((M, \pi)\), the Hausdorff symplectic groupoids are classified by a family of normal subgroups \(K_i \triangleleft \pi_1(V_i, y_i)\) for each connected component \(V_i \subset (M \setminus D)\) that ‘agree’ when pulling back to the symplectic leaves of the degeneracy locus \(D\).

Remark
The precise statement uses a graph with half-edges labelled with groups, which we illustrate by the following example.
Graph

For the log symplectic surface below

\[\text{Diagram of log symplectic manifold} \]
Graph

For the log symplectic surface below

we associate the graph below:
Graph of groups

In addition, we label the vertices and (half-)edges with the fundamental groups of V_i, D_j and the symplectic leaf of D_j, and the kernel of the first Stiefel-Whitney class of ND_j with the induced morphisms, as illustrated below:
Graph of groups

In addition, we label the vertices and (half-)edges with the fundamental groups of V_i, D_j and the symplectic leaf of D_j, and the kernel of the first Stiefel-Whitney class of ND_j with the induced morphisms, as illustrated below:
Graph of groups

In addition, we label the vertices and (half-)edges with the fundamental groups of V_i, D_j and the symplectic leaf of D_j, and the kernel of the first Stiefel-Whitney class of ND_j with the induced morphisms, as illustrated below:

Since the symplectic leaves on the degeneracy locus are points, the symplectic groupoids are classified by a family of normal subgroups for each of \mathbb{Z}, $F_2 = \langle a, b \rangle$ and \mathbb{Z}.
Thank you!