Review of Parts V & VI

Math 2200
What we have learned

- Central Limit Theorem
- Confidence interval
 - Critical value
 - Margin of error = critical value * standard error
- Hypothesis testing
 - Null versus alternative (one-sided / two-sided)
 - Type I & Type II error
 - Significance level & Power
 - P-value
- One-proportion z-interval (test)
- Two-proportion z-interval (test)
- One-sample t-interval (test)
- Two-sample t-interval (test) (pool or not?)
- Paired t-interval (test)
- Chi-squared test (GOF or Independence/Homogeneity)
Sampling distribution

- Property of normal distribution
 - Let X_1, X_2, \ldots, X_n be a random sample from a normal distribution.
 - Distribution of the sample mean: t distribution
 - The probability that the sample mean $> c$: tcdf
Confidence interval

- The critical value: invNorm, invT
- The standard error
- The relationship among sample size, margin of error, and confidence level
- Interpretation of the confidence interval
Hypothesis testing

• Type I & Type II errors
 – The relation between Type I and Type II
 – The relation to sample size
• The significance level & the power
• Interpret the p-value
• Find the p-value
How to find p-value?

• One-sided versus two-sided
• TI-83
 – DISTR \((2^{\text{ND}}+\text{VARS})\)
 – 2: NORMALCDF(left,right,mean,stderr)
 – 5: TCDF(left,right,df)
 – 7: \(\chi^2\text{CDF}(\text{left}, \text{right}, \text{df})\)
Conditions

• Independence (except for paired methods)
• Randomization
• 10% condition
• for one/two sample t-type methods
 – Nearly Normal
• For one/two proportion z-type methods
 – Sample size condition
 – Success failure condition
• For goodness-of-fit test
 – Expected cell frequency condition
How to use TI-83?

- **STAT > TESTS**
 - 2: One-sample t-test
 - 4: Two-sample t-test
 - 5: One-proportion z-test
 - 6: Two-proportion z-test
 - 8: One-sample t-interval
 - 0: Two-sample t-interval
 - A: One-proportion z-interval
 - B: Two-proportion z-interval
 - C: χ^2-test
Options in TI-83

• Input:
 – Data or Stats

• Alternative hypothesis
 – Two-sided or one-sided (left tail or right tail)

• Equal variances assumption
 – Pooled: Yes or No
Sample size

• For a given margin of error, find the sample size